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Abstract. We focus on the problem of spatial feature correspondence between images 

generated by sensors operating in different regions of the spectrum, in particular the Visible 

(Vis: 0.4-0.7 m) and Shortwave Infrared (SWIR: 1.0-2.5 m). Under the assumption that 

only one of the available datasets is geospatial ortho-rectified (e.g., Vis), this spatial 

correspondence can play a major role in enabling a machine to automatically register SWIR 

and Vis images, representing the same swath, as the first step toward achieving a full 

geospatial ortho-rectification of, in this case, the SWIR dataset. Assuming further that the Vis 

images are associated with a Lidar derived Digital Elevation Model (DEM), corresponding 

local spatial features between SWIR and Vis images can also lead to the association of all of 

the additional data available in these sets, to include SWIR hyperspectral and elevation data. 

Such a data association may also be interpreted as data fusion from these two sensing 

modalities: hyperspectral and Lidar. We show that, using the Scale Invariant Feature 

Transformation (SIFT) and Optimal Randomized RANdom Sample Consensus (RANSAC) 

algorithm, a software method can successfully find spatial correspondence between SWIR 

and Vis images for a complete pixel by pixel alignment. Our method is validated through an 

experiment using a large SWIR hyperspectral data cube, representing a portion of Los 

Angeles, California, and a DEM with associated Vis images covering a significantly wider 

area of Los Angeles. 
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1 INTRODUCTION 

As flying drones continue to shrink in size and become lighter, and sensors also become 

more compact and lighter, the utility of these technologies become even more attractive to 

provide enhanced persistent local area coverage. Adding those facts with other motivating 

facts, such that hyperspectral sensors provide valuable information regarding the spectral 

characteristics of different materials of interest, while 3D point clouds provide a source of 

complementary information that can greatly assist in the classification of hyperspectral data, 

particularly when it is difficult to separate complex material classes [1-4], does close the loop 

in the scientific community’s interest in exploiting these technologies for solutions aimed at 

improving situational awareness. Many techniques have been developed for fusion of 

hyperspectral and light detection and ranging (Lidar) data for classification purposes [5]. In 

2013, the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing 

Society (GRSS) organized a contest involving two data sets: a hyperspectral image and a 

Lidar derived Digital Elevation Model (DEM), both at the same spatial resolution (2.5 m), and 

two parallel competitions were established to devise advanced methods for fusion and 

classification of hyperspectral and LiDAR data. Many other examples can be found in 

classification of urban areas [1], but also in classification of complex forest areas [2]. As 



challenging as the fusion contest have had been for its participants in 2013, a key facilitating 

fact about the GRSS dataset is that both types of data were simultaneously acquired, as the 

corresponding sensors were onboard the same flying platform. Both datasets were 

subsequently geo-rectified, requiring some manual intervention. This critical preprocessing 

step completely removed the requirement from participants to perform an often 

underestimated task: data registration; especially when datasets are of a different type. 

Using Size, Weight, and Power (SWAP) constrained platforms, we focus on the problem 

of automatically fusing airborne hyperspectral data, collected from a small airplane, with the 

3D Lidar-derived DEM of the same scene albeit collected by a different aerial platform and at 

a different date. Our emphasis is to achieve registration, or fusion, of these individual 

datasets, while not relying on corresponding metadata, especially on Global Positioning 

System (GPS) and Inertial Navigation System (INS) data. The problem addressed in this 

paper departs from the more traditional means of fusing geo-rectified hyperspectral data with 

geo-rectified 3D DEMs. 

Our approach leverages multiple existing methods in the 3D reconstruction step of the 

overarching solution, to include Lowes’s Scale Invariant Feature Transform (SIFT) [6] and 

incremental structure from motion via Snavely Bundler technique [7-8] to recover the 3D 

structure of the scene, using as input a set of overlapping images from the scene. And, 

motivated by the image-based localization method by Sattler et al. in [9] and the Optimal 

Randomized RANdom Sample Consensus (RANSAC) algorithm [10], we propose a method 

that registers 2D spatial information from hyperspectral data with the 3D Lidar-derived DEMs 

overlapping the same scene, yielding in the process the association between elevation data 

and material spectra in the Shortwave Infrared (SWIR: 1.0-2.5 m) region of the spectrum. 

We accomplish this task by first addressing the problem of spatial feature correspondence 

between broadband SWIR and Visible (Vis: 0.4-0.7 m). SWIR electromagnetic signals are 

appealing because of their robustness to visual impediments, such as fog, haze, and smoke.  

To the best of our knowledge, results from our approach suggest for the first time to the 

scientific community that landmark scale-invariant spatial features in terrain SWIR images 

may indeed be used for pattern recognition in terrain Vis images. This correspondence is 

suggested by showing that our approach can successfully register terrain SWIR images to 

terrain Vis images representing the same scene. As a proof of principle, we use a large 

hyperspectral SWIR datacube representing a neighborhood of multiple city blocks of Los 

Angeles, California, USA; and a 3D Lidar-based DEM covering a significantly wider area of 

Los Angeles, but which includes the city’s neighborhood featured in the SWIR data. 

Acquisition of both datasets was executed by two independent aerial platforms during time 

periods of many months apart. It is outside the scope of this paper, but the fusion between 

SWIR hyperspectral and elevation data can lead to the methodical use of spectral-elevation 

rules designed to segment the digitized scene into specific types of objects, such as, buildings, 

houses, tree clusters, grassy areas, and road/parking lots, which offers a significant value for 

Intelligence, Surveillance, and Reconnaissance (ISR) applications conducted in both civilian 

and military communities. As an example, we focus on the Intelligence Preparation of 

Battlespace (IPB) [11]. 

IPB is recognized as an essential element of the intelligence cycle. This is evidenced by its 

inclusion as one of the six intelligence and electronic (IEW) tasks described in the US Army’s 

intelligence principles manual. The categories of IEW products are IPB, situation 

development, indications of warnings, target development and acquisition, and force 

protection. Battlespace is the environment, factors, and conditions that must be understood to 

successfully apply combat power, protect force, or complete the mission. IPB is an analytical 

methodology employed to reduce uncertainties concerning the enemy, environment, and 

terrain for all types of operations. IPB builds an extensive database for each potential area in 

which a unit may be required to operate. The database is then analyzed in detail to determine 



the impact of the enemy, environment, and terrain on operations and presents it graphic form. 

IPB is a continuing process. 

The remainder of this paper is organized as follows: Section 2 discusses the relevance of 

hyperspectral imagery contributions to IPB products, Section 3 discusses the datasets used in 

this research, Section 4 proposes the 3D model-hyperspectral data fusion, Section 5 discusses 

the results, and Section 6 draws some conclusions. 

2 RELEVANCE OF PROBLEM 

A successful method for automatic image registration, using images generated by independent 

SWIR and Vis cameras, may enable the automatic data fusion from different sensing 

modalities (e.g., SWIR and Lidar DEM), especially taking into account that elevation data 

collections often include Vis cameras as an attempt to associate visible with elevation 

measurements. If hyperspectral or multispectral remote sensing is one of the sensing 

modalities, such a data fusion enables further the automatic segmentation of key materials 

from the subject digitized terrain, yielding in the process high value 3-dim material segmented 

maps for ISR analysis. With SWIR signal robustness to environmental scene degradation and 

ISR decision makers in mind, IPB in particular helps the commander selectively apply and 

maximize his/her combat power at critical points in time and space, it is also designed to 

support staff planning the commander’s loop in observing, orienting, deciding, and acting. 

Therefore, IPB is a continuous, systematic process of analyzing weather, enemy, and terrain 

information in a specific geographic area [11]. Key IPB products includes: (i) Modified 

Combined Obstacles Overlay, (ii) Doctrinal Template, (iii) Situational Templates, (iv) Event 

Templates, (v) Course of Action Sketches, and (vi) Decision Support Templates. 

Conceptually, IPB analysts use an N-dim map terrain consisting of many components that are 

stacked and spatially aligned over each other, to include: Social Network 2-dim map, Belief 

System 2-dim map, Language 2-dim map, Infrastructure 2-dim map, Cyber 2-dim map, 

Information 2-dim map, and Geospatial 2-dim map. Among the various components the 

Geospatial is the one that most apply for this paper. The Geospatial dimension may be 

interpreted as a material segmented 2-dim map of the terrain, where it is valuable to show in 

the map reliable information about the spatial locations and distributions of clusters of trees 

(threats, for instance, may be hidden beneath heavy tree clusters), line of communications 

(roads and rivers, for potential evacuation or approach), grassy areas, body of water (for 

mobility/trafficability analysis), manmade structures (high buildings, house neighborhoods). 

This section identifies and discusses a number of the ways hyperspectral data contribute to 

IPB and related activities. While not written as an exhaustive list, in what follows IPB 

elements are given as bullets followed by one or more spectral applications (in italic). 

Applications are divided according to whether they provide a principal or supplementary 

contribution to the problem. Examples of these applications are found below. 

 Principal contributions: 

o Interesting aspect of terrain 

 Cover and concealment 

Landcover classification 

Hide area delineation 

 Obstacles  

Mobility trafficability analysis 

o Identification of the threat 

 Threat detection 

Detection of target in open 

Detection of sub-pixel target 

 Counter Camouflage Concealment & Deception 



Detection of camouflage nets 

Detection of concealed targets 

 Lines of communication 

Determination of road and other transportation networks  

 Threat activity 

Determination of stressed vegetation 

Vegetation burn index 

 Supplementary contributions: 

o Aspect of terrain 

 Observation & fields of fire 

Battlespace perspective viewing Viewshed  

(threat dome) analysis 

 Key terrain 

Detection of landing strips 

o Aspect of weather 

Characteristics of atmosphere for visibility 

Cloud cover 

Temperature from longwave IR 

o Other characteristics of the battlespace 

Detection of buildings and other logistics infrastructure. 

3 DATASET 

SWIR hyperspectral and elevation data are of particular interest to this work. We used an 

existent dataset collected by Headwall Photonics over a multi-block urban area of downtown 

Los Angeles, California, USA, using Headwall’s Hyperspec® SWIR hyperspectral imaging 

sensor [12] onboard a small manned airplane. Key sensor specifications: 384 spatial bands, 

260 spectral bands, wavelength range 0.9-2.5 m, maximum frame rate 450 Hz, Stirling-

cooled MCT detectors, weight of 4.4 kg, aberration corrected imaging, all-reflective 

concentric optical design, collect full spectrum range for every pixel in field of view. The 

manned airplane flew the pushbroom hyperspectral imaging system over the target area in Los 

Angeles, collecting 829 samples by 260 SWIR bands (defined in this case as a frame) and 

using the airplane’s movement to obtain 1,163 lines. A representation of the datacube 

consisting of 1,163 lines by 829 samples by 260 bands of the target area in Lost Angeles is 

shown as the band average (less than 1 m pixel resolution) in Fig. 1 (top), next to its 

correspondent Google Map color image Fig. 1 (bottom). 

The area represented in Fig. 1 includes live vegetation (trees, grass) and manmade 

structures (high buildings, houses, roads, and parking lots, and other unknown manmade 

objects). Data acquisition to obtain these images occurred 24 months apart, where the SWIR 

data acquisition happened closer to sunset; explaining the prolonged shadows observed near 

the high buildings. We hypothesized that scale invariant features of terrain landmarks between 

SWIR images and their correspondent Vis color images correspond to each other; thus, we 

decided to explicitly explore this intuition as part of our image registration approach. 

Regarding the elevation measurements, we used a 3D DEM of a significantly larger area 

of Southern California, containing a large portion of the Los Angeles County, to include 

mountains and the entire downtown Los Angeles. The DEM is geo-rectified for Latitude and 

Longitude world coordinates per pixel of equal size (1 m spatial resolution), and includes both 

elevation measurements from a Lidar system and geo-rectified wide area orthophoto (nadir 

Visible color image) to put scene context in the DEM, see Fig. 2. 

 



 

 
Fig. 1.  SWIR hyperspectral band average (top) of a multi-block urban region of 

Los Angeles, USA, next to its correspondent Google Map image (bottom). The 

area includes live vegetation (tree, grass) and manmade structures (e.g., roads, 

parking lots, high buildings, houses). By visual inspection one can notice the 

spatial feature similarities between the SWIR and Visible color images, which we 

plan on automatically extracting and exploring for image registration. 

 
 

 
Fig. 2. 3D Digital Elevation Model (1 m pixel resolution) of a portion of Los Angeles County, 

California, USA, which includes in relative scale the multi-block downtown portion of Los 

Angeles where the SWIR hyperspectral data were collected. The image registration method 

that found the correct spatial location is discussed in Section 5. 

 

Fig. 2 depicts the DEM and shows in relative scale the spatial area where within the DEM 

spatial area the SWIR data acquisition occurred; but of course this spatial location was 

unknown prior to the execution of our image registration method using these two independent 

regions of the electromagnetic spectrum: SWIR and Visible. The orthophoto provided with 

the DEM covers an area that are many orders of magnitude larger than the area covered by the 

SWIR datacube. In the scope of this paper, the successful registration by a machine using 
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these image sets constitutes a successful automatic association of elevation data with spectra, 

given that for each aligned pixel between these two images there is a corresponding spectrum 

available in the hyperspectral datacube. Our image registration approach is discussed next.   

4 FUSION APPROACH FOR 3-D DEM AND HYPERSPECTRAL DATA 

Inspired by image-based localization approaches similar to the one introduced by Sattler et al.  

in [9], and the Optimal Randomized RANSAC algorithm [10], we propose the approach 

depicted in Fig. 3 to register the 2D spatial area of hyperspectral data cubes onto an available 

3D DEM that includes the hyperspectral target scene in order to associate elevation 

measurements with each spectra, as follows: 

(a) The fusion starts by representing each 3D point by all the SIFT descriptors contributing 

to its value from the reconstruction. All the descriptors of a single 3D point are 

assigned to a visual word. If more than one descriptor is coming from the same image, 

the mean of those SIFT descriptors is used to represent the contribution of that image 

to the 3D point.  The K-means clustering algorithm is applied to cluster all the 3D point 

clouds into k clusters. We used 100,000 clusters in this experiment, given the size of 

the 3D reconstruction. 

(b) To improve computational efficiency, while facilitating convergence into a solution, 

we avoid comparing all of the points in the point clouds by assigning the centroids 

obtained from the k-means to be the visual words, as shown in Fig. 3. 

(c) SIFT is independently computed on the SWIR and Visible reference images and results 

are represented as visual words for comparison with visual words from (b) (see Fig. 3, 

and details in Table I.)  

(d) The visual word comparison strategy can then be reduced by finding through a 

sequential search the two nearest visual words in (b) to the visual word (hyperspectral-

based SIFT descriptor) in (c). 

(e) The sequential search in (d) yields as set of correspondences between each 

hyperspectral-based SIFT descriptor and two 3D model visual words. A 

correspondence is accepted if the two nearest neighbors pass the SIFT ratio test with a 

certain threshold.   This is based on the idea that the probability that a match is correct 

can be determined by taking the ratio of distance from the closest neighbor to the 

distance of the second closest [6]. The method rejects all matches in which the distance 

ratio is greater than 0.7.  This threshold works empirically well for this dataset. If more 

than one 2D-feature matches exist in association with the same 3D point, the descriptor 

with smallest Euclidean distance is selected.  

(f) The linear search continues until a user-specified number of correspondences (Nt) is 

satisfied (in this experiment this number was set to 100), or the search is exhausted 

from the hyperspectral data perspective. 

(g) The correspondence set obtained in (f) does not necessarily guarantee a geometric 

alignment of the hyperspectral images onto the 3D DEM that would match the quality 

that could be achieved with human intervention.  In order to improve  the  alignment  

process,  we applied the Optimal Randomized RANSAC  algorithm  to  the  set  of  

correspondence vectors obtained in (f).  The geometric alignment is declared as 

acceptable using the criterion that more than n correspondences (n = 5 works well 

empirically in this dataset) must be inliers to accept a match. See Table I for more 

details. 

The fusion algorithm summarized in Table 1 also applies to the specific case when a 3D 

reconstructed model from photogrammetry is available with the correspondent photos in 

which the structure from motion approach can be employed. We re-emphasize to the reader 

that fusion in this context, beyond the obvious registration between 2D photos and band 



images, means being able to associate 3D elevation with spectral data after the 2D image 

registration process is accomplished.  

 

TABLE 1 

ALGORITHM: HYPERSPECTRAL-3D MODEL DATA FUSION 

 
 

The approach depicted in Fig. 3 also applies to the fusion of the available SWIR 

hyperspectral datacube with geo-rectified 3D DEM (obtained from Lidar measurements); 

albeit with a key difference. As the DEM of the Los Angeles County also included the 

correspondent overlaid orthophotos, the matching search only considers the SIFT descriptors 

from the downtown SWIR image and the wider area DEM orthophoto. As discussed in 

Section 5, results from our experiment using our approach validate our intuition that these 

landmark descriptors are highly correlated between SWIR and Visible images of the same 

scene. 

 



 
 

Fig. 3. 3D model-hyperspectral data fusion. 

5 RESULTS AND DISCUSSION 

The fusion approach described in Section 4 was applied to the hyperspectral SWIR dataset 

and Visible orthophotos of corresponding DEM using the following details.  

We chose band 14 (near 1.2 m) to represent the spatial area of the entire SWIR 

hyperspectral datacube because of the high reflectance property of most material types in an 

urban scene, relative to other bands. In order to address more efficiently the computational 

load and associated time, given the vast spatial coverage of the DEM relative to the 

hyperspectral SWIR spatial coverage (see Fig. 2), we split in half the spatial area of SWIR 

band-14 and allowed each half to compute their spatial matches independently of each other, 

such that each half estimated its spatial feature matches within a neighborhood centered at a 

random (without replacement) spatial location in the wide-area Visible orthophoto, thus 

eliminating once for all the undesirable locations in the wide-area digitized scene and 

retaining the better prospects. This proposed approach is highly effective because it allows the 

computational load, which is O2 relative to the spatial area, to be processed in parallel using 

two smaller areas rather than simultaneously using a single twice-as-large spatial mosaic, 

cutting in half the matching-search computational time. This reduction rate is also 

independent of the employed CPU (central processing unit) or GPU (graphics processing 

unit). So, the benefit for using this approach is twofold: (i) the split-and-conquer strategy 

allows for an O2 computational time reduction that is linearly proportional to the number of 

splits (e.g., 2, 3, 4), as it allows for parallel processing, and (ii) the random-without-

replacement-location-withdraw strategy allows for the execution of a significantly more 

efficient search relative to systematically processing every location across the spatial area of 

the wide-area Visible orthophoto. 

Our matching search strategy paid off by yielding the local match result depicted in Fig. 4, 

where the gray area represents the SWIR spatial area overlaid onto the larger local 

neighborhood in the Visible orthophoto that produced the best matching result. Notice in Fig. 

4 that the split match is slightly misaligned, since they were performed independently from 

each other. We could rectify this misalignment by applying our matching search approach as a 

last step between the entire SWIR mosaic and the neighborhood where this split conversion 

occurred in the Vis orthophoto; this optimization, however, was not done for this paper. The 

real advantage from this spatial match is that each voxel in the SWIR datacube not only 

features 270 bands but also has a corresponding elevation from the DEM. 

 



 
Fig. 4.  Successful registration between the SWIR band image (embedded gray scale 

image in the center) and a spatial location within the DEM’s orthophoto (larger 

image).   

 

Using this data association, one can generate IPB products based on spectral and elevation 

properties as discussed earlier.  For instance one could apply material property indexes (e.g., 

wetness index) to the fused data in order to segment the scene into main material types, such 

as materials in the scene containing large concentration of water (e.g., live vegetation (trees, 

bushes, and grass)) and dry materials (e.g., manmade structures (roads, buildings, houses)). 

Using the elevation data in conjunction with the material wetness segmented map, for 

instance, a method can be developed to provide further segmentation in the scene, to include 

the spatial locations of high buildings, low houses, high trees, low grass areas, parking 

lots/roads, etc. Demonstrating this capability, however, is beyond the scope of this paper. 

6 CONCLUSION 

We proposed a fusion method that uses as input aerial nadir-view hyperspectral imagery and 

corresponding photos associated with DEMs created from Lidar data; and showed, using SIFT 

and Optimal RANSAC algorithm, that spatial correspondence exist and can be successfully 

employed for spatial registration between SWIR and Vis images. To the best of our 

knowledge, this spatial correspondence has never been reported in the literature as a means to 

register imagery generated by these two sensing modalities. Results from this work can be 

used with other higher level methods (e.g., spectral-elevation rule based approaches) to 

produce terrain segmented maps of high value for IPB and other surveillance and 

reconnaissance applications. The advantages of our approach are summarized as follows.  

Robustness in GPS denied or degraded environment: Because the data registration 

between both modalities (hyperspectral and elevation data) is performed based on spatial 

features and does not rely on using GPS or INS (inertial navigation system (INS)) 

measurements to bring both data sets into the world coordinates, the approach may be applied 

using data from different aerial platforms under GPS denied or degraded environment. For 

instance, this approach could be applied to a scenario where hyperspectral data acquisition 

was conducted using an aerial platform, to include a small drone, at the point of need and 

under a GPS denied or degraded environment, while elevation data (e.g., Lidar data) of the 

target area collected by an independent aerial platform are available and geo-rectified. In this 

scenario, the approach may be interpreted as a method that can geo-rectify the hyperspectral 

data cube(s), while associating spectra with elevation data for additional processing that can 

further segment the digitized terrain—using for instance spectral-elevation rule based 

properties—into key material types (live vegetation (specifically separating high tree clusters 

from low grassy areas), water, and manmade structures (specifically separating high buildings 

from lower elevation houses). 



Robustness to visually degraded conditions: In principle, one can leverage the natural 

SWIR electromagnetic waves’ robustness to visual atmospheric obscurations to produce 

material segmented maps from data collected during degraded conditions (fog, haze, or 

smoke), given that we showed that key scale-invariant spatial features in SWIR images can be 

used for pattern recognition in corresponding spatial features in Vis images.  

Flexibility in 3D visualization: The ability to successfully register data that are not geo-

rectified with data that are geo-rectified opens additional windows of opportunity, to include 

further processing to produce terrain segmented maps ready to be visualized using standard 

3D viewers that operate in the world coordinates, e.g., Google Earth. 
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