Molecular Dynamics simulation technique
using Message Passing Interface (MPI) library

Andrew Pownuk
Osei Kofi Tweneboah
Kamal Nyaupane
Md Al Masum Bhuiyan

Abstract

In this project, we present the parallel programming framework in
molecular dynamics of an n-body problem using Message Passing In-
terface (MPI) library. We measure the performance of our implemen-
tation for different number of processes and characterize the method
for minimizing computational cost at the expense of communication.
Our approach is to use Newton’s second law from classical mechanics
and the concepts of statistical mechanics.

1 Introduction

Molecular dynamics (MD) is a computer simulation technique that al-
lows one to predict the time evolution of a system of interacting parti-
cles (atoms, molecules, granules etc.) If the force between the particles
is completely described by adding the forces between all pairs of par-
ticles and if the force between each pair acts along the line between
them, this is called an n-body central force problem (often just an
n-body problem). Such a problem is a good choice for parallelization
because it can be described with n items (the particles) but requires
O(n?) computation (all the pairs of particles). Thus, we can expect
good speedup for large problems because the communication between
processes will be small relative to the computation.

1.1 Basics of Molecular dynamics

First, for a system of interest, one has to specify:

e Set of initial conditions i.e. initial positions and velocities.

e Secondly, the evolution of the system in time can be followed by
solving a set of classical equations of motion for all particles in
the system.

Within the framework of classical mechanics, the equations that gov-
erns the motion of classical particles are the ones that correspond to
the second law of classical mechanics formulated by Sir Isaac Newton.
Newton’s second law of motion states that force, F', equals to the rate
of change of momentum, %, ie

_d
=0
d(mv)
dt
mdv

dt

= ma

F P =mu

where F' is the force exerted on the particle, m is mass of the particle
and a is the acceleration of the particle.

To calculate the force experienced by each atom in our problem,
we use the gravitational force i.e.

_ GM M,

F
r2

)

where M7 and M> are the masses of the interacting particles, G is the
gravitational constant and r is the distance between the two particles.
In the next section, we describe the method used to find the velocity
and position of every particle.

1.2 Euler forward method

From the knowledge of the force on each atom, we can determine the
position and velocity of the particle in the system. Here, we use the
explicit Euler’s method to get the new parameters i.e position and
velocity.

Vip1 = Ui+ dAt
Tl =T+ VAt
tis1 = t; + At

2 The n-body problem

In this section, we study the n-body problem using MPI features,
including new collective operations, persistent communication request,
and new derived data-types. In implementing an n-body code, we first
need to divide the particles evenly among the processes. For example,
if there are 100 particles and 10 processes, we put the first 10 particles
on process 0, the second 10 particles on process 1, and so forth. To
compute the forces on the particles, each process must access all the
particles on the other processes.

First, we define a particle datatype and send the data to other
processors. We could use MPI_Send, MPI_Recv to send the data.
But it does not scale (it takes time proportional to the number of pro-
cesses), it may deadlock (because the code requires that MPI_Send
provide buffering), and other problems as well which will be dis-
cussed in the presentation. To overcome these problems, we use
MPI _Gather and MPI _Bcast.

It is more convenient and efficient to combine the gather and broad-
cast operations into a single operation. MIPI_Allgather does this. If
all processes had the same number of particles, then we could use
MPI_Allgather to get the particles.

In most cases, however, each process will have different numbers
of particles. Then, we can use a variant of MPI_Allgather that
permits differing sizes of data to be sent from each process. The
routine MPI_Allgatherv takes the lengths of each item to be received
and the displacement relative to the receive buffer (in units of the
extent of the receive datatype) where the item will be stored.

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

int MPI_Allgatherv(const void *sendbuf, int sendcount, MP|_Datatype sendtype,

void *recvbuf, const int *recvcounts, const int *displs,
MPI_Datatype recvtype, MPI_Comm comm)

Figure 1: C bindings for n-body code

3 Cost Analysis

On networks supporting bidirectional, fully connected, single-ported
communication the allgather operation can be solved in the optimal
logy p number of communication steps for any p number of processors.
If m is the total amount of data to be gathered on each process, then
at every step, each process sends and receives % amount of data.
Therefore, the time taken by this algorithm is given by,

—1)m
Teomm = ts 10g2p + twu~ (1)

The bandwidth term t,, cannot be reduced further because each pro-
cess must receive % data from p — 1 other processes.

4 Run-time of the n-body problem

For our n-body problem, the message transmitted across p processors
is m = 4n/p. The serial runtime for our n-body problem is given as

T, = n’rt,. (2)
and the parallel runtime of the n-body problem is:

nZth

-1
T, = + <t5 logy p + 4tw(ppz)n> T (3)

where t. is the time for an arithmetic operation, 7 is the number of
time iteration, ts is the message startup time, and ¢,, is the transmis-
sion time per word.

5 Theoretical Analysis

5.1 Speedup
In our problem, we have the serial runtime,
T, = n27'tc

and parallel runtime,

2
n°tt —1)n
=+ <tslogzp+4tw(pp2)> T

Therefore, speedup is:

d I
speedup = —
T
_ n27'tc
nZ;-tc + (ts logy p + 4t (P—pzl)n) -
nztc

% + (ts logs p + 4ty (p;?”>

5.2 Isoefficiency
The parallel overhead function, To(W, p), is given as:

TO(Wap) = pr - T

2
t -1
=p (n;’ ‘4 <t5 loggp+4tw7(p 2)n> T> —n’rt,

= n27'tc +tstplogep + 4th(p—pl)n — n27'tc
Thus,
To(W,p) = tstplogyp + 4tw7(p_pl)n- (4)
We know,
W =K -Ty(W,p) where, K = % where F = efficiency

Now, W = &(n?) = n =&(W'/?) and so (4) becomes:

— Hw/2
To(W,p) = tsplogyp + st 2= IV ()
From (5), either
W = Kplogy p (6)
or 1/2
—1
W g =W
p
- (017
p—
Since Kplog, p has a higher asymptotic rate than K (. ;21)2, the isoef-

ficiency of the parallel system is W = ©(plogy p). The constant K is
the factor that most limit the scalability of the algorithm.

5.3 Cost Optimality

Our parallel system is cost optimal if and only if , pT,, = S(W).
From this we have,

T, = To(W,p) + W
— o(W)=Toy(W,p) + W
= To(W,p) = O(W)

Thus,
—1
Lyrplogy p + 4tyr L= U0 _ gy (8)
p

From our problem size, W = ©(n?) = n = W2 and so (8) becomes,

-1 1/2
tsTplog2p+4tw7-(p W =W,
p
. 1/2
=W
p
p
_ -y _
p

5.4 Performance results

Time of the calculations in seconds (Stampede)

n p =2 p=4 | p=28 | p=16
1000 0.259 0.131 | 0.067
2000 1.216 0.526 | 0.263 | 0.133
4000 | 4.143017 | 2.441 | 1.051 | 0.525
8000 | 19.371 | 8.320 | 4.911 | 2.104

6 Conclusion

In this project, we have discussed how molecular dynamics simula-
tions can be performed using MPI library. We theoretically analyzed
the speedup, isoefficiency and cost optimality of our problem. The
performance of our implementation was done for different number of
processes and we characterized the method for minimizing compu-
tational cost at the expense of communication using MPI_Allgather.

Number of processors (p)

25

20
15 —n=1000
g n=2000
E 10 n=4000
n=8000

5

0

Figure 2: Plot of time for number of particles and processors.

In future, once we use the implementation of OpenMP or GPU as
well, it would give us a comprehensive idea about the cost analysis
of n-body problems which would be helpful to apply in astrophysics,
plasma physics and fluid dynamics as well.

References

[1] “Introduction to Parallel Computing”, Second Edition - Ananth
Grama, Anshul Gupta, George Karypis, Vipin Kumar.

[2] “A priemier for parallel implementation of molecular dynamics
simulaitons”, David Keffer, 2003.

[3] “Using MPI Portable Parallel Programming with the Message-
Passing Interface” - Third Edition - William Gropp, Ewing Lusk,
Anthony Skjellum

[4] “High Performance N-body Simulation on Computational Grids”
- Derk Jan Groen.

[5] http://www.cis.upenn.edu/ cis110/13sp/hw/hw02/nbody.shtml
[6] n-body problem, Wikipedia.

