Waveguide Measurement of Materials
Paul Deffenbaugh, Dr. Kenneth Church, Dr. Raymond Rumpf

CAPABILITY
Measurement of dielectric constant
- R-band: 1.72-2.6 GHz (109 x 54 x 35 mm)
- X-band: 8.2-12.4 GHz (22 x 10 x 7 mm)

Knowledge of dielectric constant is critical for EM design

Using new materials such as 3D printed materials in EM work requires measurement of dielectric constant

DESIGN FOR LOW ERROR
- Avoid sample electrical lengths of $\lambda/2$ because 100% trn / 0% ref condition magnifies errors
- Loss cannot be measured accurately using NRW, use a resonant method

REFERENCE:

PROCESS
1. Fab material to waveguide holder dimensions (no air gaps!)
2. Calibrate network analyzer using TRL calibration
3. Measure s-parameters using network analyzer
4. Run Nicholson-Ross-Wier math for each frequency point

NICHOLSON-ROSS-WEIR
Based on the reflection and transmission coefficients of a wave through an air-material-air interface. From the coefficients, one may find the complex permittivity and permeability.

Specifics of derivation are complex and are described elsewhere.

Essentially converts measured s-parameters to dielectric constant.

NICHOLSON-ROSS-WEIR MATH

Reference:

W.M. Keck Center
FOR 3D INNOVATION

Pioneering 21st Century
Electromagnetics and Photonics