Basic EOQ Model

Total Cost = \(A \cdot c + \frac{A}{Q} \cdot S + \frac{Q}{2} \cdot i \cdot c \)

\(H = i \cdot c \)

\(EOQ = \sqrt{\frac{2AS}{ic}} \)

with

- \(A = \) annual demand/usage [units/year]
- \(c = \) unit acquisition cost [$/unit]
- \(S = \) ordering/setup cost [$/order]
- \(i = \) annual carrying cost rate
- \(H = \) carrying cost per average unit of inventory per year [$/unit/year]
- \(TRC = \) total relevant cost

Reorder Point for Basic EOQ Model

\(ROP = \bar{d}L \)

with

- \(\bar{d} = \) average daily or weekly demand [units/day or units per week]
- \(L = \) leadtime [# of working days or weeks]

Order Cycle Time, or Time Between Orders (TBO)

\(TBO = \frac{Q}{A} \cdot (# \ of \ working \ days/\ year) \)

\(or \ \frac{Q}{A} \cdot (# \ of \ working \ weeks/\ year) \)

Monetary Unit Lot Size Model

\(EOQ = \sqrt{\frac{2ADs}{i}} \)

with

- \(A_D = \) annual usage in dollars

Period-Order Quantity (POQ)

\(POQ = \frac{EOQ}{average \ weekly \ usage} \)

EOQ with Transfer Batches (Non-Instantaneous Replenishment)

Total Cost

\(= A \cdot c + \frac{A}{Q} \cdot S + \frac{Q}{2n} \cdot i \cdot c \)

\(EOQ = \sqrt{\frac{2nAS}{ic}} \)

with

- \(n = \) number of transfer batches

EOQ with Usage During Production

Total Cost

\(= A \cdot c + \frac{A}{Q} \cdot S + \frac{p-d}{p} \cdot \frac{Q}{2} \cdot i \cdot c \)

\(EOQ = \sqrt{\frac{2AS}{ic}} \cdot \frac{p}{p-d} \)

with

- \(p = \) daily/weekly production rate
- \(d = \) daily/weekly usage rate
Reorder Point for Fixed Order Quantity Model with Safety Stock

\[ROP = DDLT + SS \]
\[= \bar{d}L + z\sigma_L \]
\[\sigma_L = \sqrt{L \cdot \sigma_d} \]

where
DDLT = demand during leadtime
SS = safety stock
\(z \) = safety factor associated with the service level
\(\sigma_d \) = standard deviation of daily [or weekly] demand

Note: You will be provided a clean copy during the exercise.