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Abstract—Machine learning (ML) models based on
RGB images are vulnerable to adversarial attacks,
representing a potential cyber threat to the user. Ad-
versarial examples are inputs maliciously constructed
to induce errors by ML systems at test time. Recently,
researchers also showed that such attacks can be
successfully applied at test time to ML models based
on multispectral imagery, suggesting this threat is
likely to extend to the hyperspectral data space as
well. Military communities across the world continue
to grow their investment portfolios in multispectral
and hyperspectral remote sensing, while expressing
their interest in machine learning based systems. This
paper aims at increasing the military community’s
awareness of the adversarial threat and also in propos-
ing ML training strategies and resilient solutions for
state of the art artificial neural networks. Specifically,
the paper introduces an adversarial detection network
that explores domain specific knowledge of material
response in the shortwave infrared spectrum, and a
framework that jointly integrates an automatic band
selection method for multispectral imagery with ad-
versarial training and adversarial spectral rule-based
detection. Experiment results show the effectiveness of
the approach in an automatic semantic segmentation
task using Digital Globe’s WorldView-3 satellite 16-
band imagery.

Index Terms—Adversarial Examples, Adversarial
Machine Learning, Multispectral Imagery, Defenses

I. INTRODUCTION

Machine learning is enabling numerous innova-
tions in many different areas and industries, includ-
ing health care, transportation and logistics, among
many others. New algorithms for face recognition,
cancer diagnosis, and self-driving cars are just a few

examples that show the progress in the field. The
broad use of machine learning makes it important
to understand the extent to which machine learning
algorithms are subject to attacks, particularly when
used in applications where physical security or
safety are at risk.

Several sensitive applications, such as the screen-
ing systems in airports, military applications
for mission planning, situational awareness, and
surveillance, night vision systems, thermal sensors,
and target identification systems, rely on sophisti-
cated non-RGB imaging systems. Malfunctioning of
these systems could have catastrophic implications.
Recently, it has been shown that RGB and non-
RGB image-based machine learning (ML) systems
are often vulnerable to adversarial examples [3], [8],
[9]. Adversarial examples are inputs maliciously
constructed by adversaries to force misbehavior
in the ML systems at test time. Researchers are
putting efforts towards developing successful de-
fenses against deceptive attacks in both RGB and
non-RGB context [2], [8], but the problem remains
largely unsolved.

In this paper, we improve on an existing defense
technique to make multispectral image based ML
systems for semantic segmentation robust against
adversarial examples. We introduce a detection net-
work that uses domain knowledge information of
material response in the shortwave infrared (SWIR)
spectrum to effectively detect adversarial examples.
We also propose a framework that integrates input
subset feature selection, adversarial training, and



a detector network to drastically improve the ro-
bustness of the models without sacrificing perfor-
mance.

II. BACKGROUND

A. Generating Adversarial Examples

The objective of adversarial learning is to find
a perturbation ξ that when added to an input X
changes the output of the model in a desired way.
The attacker tries to keep ξ small enough such
that when it is added to X to produce XAdv = X
+ ξ the difference between XAdv and X is almost
imperceptible.

We denote by the function fθ a deep neural
network with parameters θ. fθ(X) is the output
of fθ when receiving input X, and ytrue is the
corresponding ground-truth label. In this work, X
is an image, fθ(X) is the conditional probability
p(y|X; θ) encoded as a class probability vector,
and ytrue is a one-hot encoding representation of
the class. J(fθ(X), ytrue) is the loss function. We
assume that J is differentiable with respect to θ and
with respect to X.

We tested the following attack methods:

1) Fast Gradient Sign Method (FGSM): Good-
fellow et al. [3] proposed a fast single-step method
for computing untargeted adversarial perturbations.
This method defines an adversarial perturbation as
the direction in image space that yields the greatest
increase in the linearized cost function under L∞
norm with the perturbation bounded by the param-
eter ε. This can be achieved by performing one step
in the gradient sign’s direction with step-width ε:

XAdv = X + ε sgn(∆xJ(fθ(X), ytrue)) (1)

This method is simple and computationally
efficient compared to more complex methods but
it usually has a lower success rate [5].

2) One-step Target Class Method (FGSM ll):
Kurakin et al. [4] proposed an alternative approach
to FGSM that maximizes the conditional probability
p(ytgt|X) of an specific target class ytgt which is
unlikely to be the real class for the input image X.

XAdv = X− ε sgn(∆xJ(fθ(X), ytgt)) (2)

As proposed in [4], we choose the least likely
class predicted by the model as the target class ytgt.

3) Iterative FGSM Method: [5], [7] This is
an extension of FGSM in which FGSM is applied
multiple times with a small step size:

XAdv0 = X,

XAdvi+1 = ClipX , ε {XAdvi +α sgn(∆xJ(fθ(XAdvi ), ytrue))}
(3)

This increases the chance of fooling the original
network. In this work, as in [4], we used α = 1,
which means that we changed the value of each
pixel by 1 on each step. We set the number of
iterations to be min(ε+ 4, 1.25 ∗ ε).
ClipX , ε(A) refers to the element-wise

clipping of A, with Ai,j clipped to the range
[Xi,j − ε,Xi,j + ε]. This guarantees that the max
l∞-norm of the perturbation is never greater than
ε.

4) Iterative Least-Likely Class (Iterative FGSM
ll): Proposed on [5], Iterative FGSM ll is a stronger
version of FGSM ll. In this case the target class is
set to be the least-likely class (yll) predicted by the
network to fool:

XAdv0 = X,

XAdvi+1 = ClipX , ε{XAdvi − α sgn(∆xJ(fθ(XAdvi ), yll))}
(4)

We used the FGSM, FGSM ll, Iterative FGSM
and Iterative FGSM ll for Semantic Segmentation
attacks. The attacks were generated with l∞ norms
of 2, 4, 8, 16, and 32, which corresponds to allowing
increasingly more perceptible changes to the origi-
nal image.

B. Multispectral Image Classification

Semantic segmentation consists of inferring la-
bels for every pixel in an image. In the end, each
pixel is labeled with the class of the enclosing
object or region. The per-pixel labeling problem can
be reduced to the following formulation: assign a
label from the label space L = l1, l2, ..., lk to each
element in a set of pixels X = x1, x2, ..., xN .



Each label l represents a different class or ob-
ject, e.g., building, vehicle, man-made structure, or
background. This label space has k possible labels
which is usually extended to k+ 1, treating l0 as a
background or void class. Usually, X is a 2D image
of W × H = N pixels. However, that set can be
extended to any dimensionality such as multispec-
tral and hyperspectral images. Multispectral image
classification is the task of classifying every pixel
in a multispectral data cube, which is equivalent
to performing semantic segmentation using a mul-
tispectral data cube as the input image. This is one
of the most common uses of multispectral data so
we focus on this task for our experiments.

C. Integrated Learning and Feature Selection

Ortiz et al. [8] proposed Integrated Learning
and Feature Selection (ILFS) as a framework to
automatically select the input features that are most
useful for the learning task. Dimensionality re-
duction was done simultaneously with learning a
model to solve the learning task. While the bands
in the high dimensional image are discrete, they
are densely sampled, thus they can be viewed as
a continuous and differentiable space. Then, they
used Stochastic Gradient Descent (SGD) to choose
bands that will help a deep neural network better
discriminate objects in a multispectral image. The
authors showed that models trained using ILFS are
robust to adversarial examples.

III. EXPERIMENTAL SETUP

A. DSTL Satellite Imagery Dataset

The Defense Science and Technology Laboratory
(DSTL) released a dataset of 1km × 1km satellite
images for classification at the pixel level. There are
two types of spectral imagery content provided in
this dataset: 3-band images with RGB natural color
and 16-band images containing spectral information
captured by wider wavelength channels. This multi-
band imagery is taken from the Visible and Near
Infrared (VNIR) (400-1040nm) and short-wave in-
frared (SWIR) (1195-2365nm) range collected us-
ing the DigitalGlobe's WorldView-3 satellite sys-
tem. DSTL labeled 10 different classes.

B. Models

We used Tensorflow to train different models
of VGG-19-based Fully Convolutional Networks
(FCN-8) [6] for semantic segmentation. We trained
models both with and without using ILFS for di-
mensionality reduction. We trained our deep net-
work on the DSTL Satellite Image Dataset us-
ing VNIR and SWIR channels as input. 10000
randomly selected (without replacement) 224x224
patches were used for training, and 500 224x224
patches were reserved for testing. The models were
trained on an NVIDIA Tesla GPU on Amazon Web
Services. All the models were trained for the same
number of epochs on the training set. A small batch
size (4 patches) was necessary to fit the training set
in memory.

C. Robustness Evaluation

The mean Intersection over Union (mean IoU)
is the primary metric used for evaluating semantic
segmentation. However, as the accuracy of each
model varies, we adopt the relative metric used in
[1] and measure adversarial robustness using the
mean IoU Ratio. The mean IoU Ratio is the ratio
of the network’s IoU on adversarial examples to that
for clean images computed over the entire dataset.
A higher mean IoU Ratio implies more robustness.

IV. NON-RGB MODELS ARE VULNERABLE

Ortiz et al. [8] showed that known methods to
produce adversarial attacks for RGB images gen-
eralize to fool non-RGB image-based models with
very little to no modifications and that it is even
easier to fool this type of systems because more
information can be modified.

V. DETECTING ADVERSARIAL EXAMPLES

TABLE I: Detection Performance

Wetness-based Detector Network Accuracy

Attack ε = 2 ε = 4 ε = 8 ε = 16 ε = 32

FGSM 0.84 0.99 1.00 1.00 1.00
FGSM ITER 0.94 0.99 1.00 1.00 1.00

FGSM ll 0.83 0.99 1.00 1.00 1.00
FGSM ll ITER 0.95 0.99 1.00 1.00 1.00
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Iterative FGSM Attack Iterative FGSM ll Attack
Fig. 1: Robustness of multispectral image-based models to adversarial examples. We observe that models
trained on high dimensional images using ILFS along with adversarial training are more robust to
adversarial examples.
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Fig. 2: Detector Network Architecture. Numbers on top of arrows denote the number of feature maps
(neurons in case of dense layers) and numbers below arrows denote spatial resolutions. Conv denotes a
convolutional layer, MP denotes a max pooling layer, Soft denotes softmax and Dens a fully-connected
layer. Spatial resolutions are decreased by MP. All convolutional layers have 3x3 receptive fields and are
followed by rectified linear units and batch normalization

Soil moisture information is one indicator of
drought. Remote sensing techniques are able to
record accurately the conditions of soil moisture in
a large area by using a wetness index. We define a
wetness index as follows:

wetness = bswir2−bswir4

bswir2+bswir4
, where bswir2 is the im-

age channel corresponding to the wavelength 1550-

1590nm and bswir4 is image channel corresponding
to the wavelength 1710-1750nm

The wetness index tends to be uniform among
the objects in the scene so even small perturba-
tions on different directions are easy to distinguish.
The difference between the pristine image and its
adversarial example from Fig. 3 is imperceptible



by humans, but our proposed detector is sensitive
to that difference using as input the spectral ruled
based output images shown in Fig. 3 (right side, top
and bottom) instead. To exploit this fact we augment
the semantic segmentation network by adding a
detector subnetwork, which branches off the main
network after the input layer and produces an output
padv ∈ [0, 1] which is interpreted as the probability
of the input being adversarial. We train this detector
network to classify the inputs as being either regular
examples or examples generated by an adversary.
For this, we first train the segmentation networks
on the regular (non-adversarial) dataset as usual and
subsequently generate adversarial examples for each
data point of the train set using the FGSM method
discussed previously with ε = 8. We thus obtain a
balanced, binary classification dataset of twice the
size of the original dataset consisting of the original
data (label zero) and the corresponding adversarial
examples (label one). From the resulting dataset
we obtain the images corresponding to the wetness
index of both clean and adversarial data. Then, we
freeze the weights of the segmentation network and
train the detector such that it minimizes the cross-
entropy of padv and the labels. Fig. 2 shows the
architecture used for the detector network.

The overall approach enables a machine to deter-
mine whether the input image is a pristine or ad-
versarial example, and would only allow the former
to be tasked by the classifier. Table I shows the de-
tectability of different adversaries for the proposed
detector network. Even though the detector was
trained using adversarial examples from a specific
attack and a specific norm of perturbation it is able
to generalize to other attacks. For a perturbation
greater or equal to 8, the detector networks always
detect the attacks. It is important to mention that for
our experiment we assume static adversary, which
means that the adversary only has access to the
classification network but not to the detector.

VI. IMPROVING ILFS ROBUSTNESS THROUGH
ADVERSARIAL TRAINING

Adversarial training increases robustness by aug-
menting training data with adversarial examples.
Madry et al. [7] showed that adversarially trained

models can be made robust to white box attacks
(where the attacker has full knowledge about the
task, model, and ML algorithm used by the de-
fender) if the perturbation computed during training
maximize the model’s loss. We used the obtained
adversarial examples from the previous section to
augment the original DSTL training set. Then, we
retrained the FCN-8 model for semantic segmen-
tation using ILFS and the augmented dataset. This
forces ILFS to choose not only the bands that will
help a deep neural network to better discriminate
objects in a multispectral image, but also to choose
bands that are less sensitive to adversarial pertur-
bations. Figure 1 shows the mean IoU ratio as a
measure of the robustness of the trained models
to adversarial examples obtained in a white box
setting with different l∞-norm of perturbation (2,
4, 8, 16, 32). From Figure 1 we can see that multi-
spectral image-based models trained using ILFS and
adversarial training are more robust to adversarial
examples.

As a final framework for semantic segmentation
of multispectral images, we propose to combine the
spectral-rule based adversarial detection network
with a network trained using ILFS and adversarial
training. Figure 1 shows that most of the mistakes
done by ILFS occur when the perturbation is bigger
than 8. The adversarial detector network always
detects adversaries with a perturbation bigger than
8. Because of that, both defense mechanisms com-
plement each other producing a very robust model.

VII. CONCLUSIONS

We introduced a network that detects adversarial
examples from images generated by applying a
knowledge-based spectral filter in the SWIR region.
The network achieves an accuracy above 83% in
the detection of adversarial examples generated us-
ing for state-of-the-art algorithms. We also showed
that an existing multispectral based ILFS defense
could be improved by simultaneously employing
adversarial training and automatic spectral band
selection. Finally, we proposed a framework that
integrates the SWIR rule based adversarial detection
network, ILFS, and adversarial training to achieve
a significantly improved ML model resilience, as
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Fig. 3: Top images are clean. Bottom Images are obtained from an adversarial example. Vegetation index
was obtained as follows: NDV I = bvnir7−bvnir5

bvnir7+bvnir5
, where bvnir7 is the image channel corresponding to the

wavelength 770-895nm and bvnir5 is image channel corresponding to the wavelength 630-690nm.

a promising approach for the military community.
For follow up, we plan to extend this research to
explore spectral material phenomena in the thermal
longwave infrared (LWIR: 7.5-14.0 micron) spec-
trum for daytime and nighttime machine learning
resilience to adversarial attacks.
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