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Abstract

A neural network is a system of hardware and/or software patterned after the operation

of neurons in the human brain. Neural networks, also called Artificial Neural Networks

are a variety of deep learning technology, which also falls under the umbrella of artificial

intelligence, or AI. Recent studies shows that Artificial Neural Network has the highest

coefficient of determination (i.e. measure to assess how well a model explains and predicts

future outcomes.) in comparison to the K-nearest neighbor classifiers, logistic regression,

discriminant analysis, naive Bayesian classifier, and classification trees. In this work, the

theoretical description of the neural network methodology and some practical applications

which are based on real world data are presented. We used the Multilayer perceptron (often

simply called neural network) to identify financial market crashes and also compute the

credit card default payments of customers of a financial institution. The problem of de-

tecting market crashes and credit card default payments were modeled as a special class of

classification problem. The neural network technique is very efficient and robust compared

to other classification techniques since it correctly discriminates with good accuracy.
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Chapter 1

Introduction

Stock price is the price of a single stock among the number of other stocks sold by a

company listed in public offering, having this allows the public to own a portion of it. One

of the major problems of stock market is its difficulty on the market index prediction; this is

of practical interest for a number of reasons. For one, stock prices change because of supply

and demand. Suppose, if many people are willing to buy a stock, then the price goes up as

there is more demand. With this we identify the high interest on how important the stock

market historical data has become, and more accessible as an investment tool; not only for

investors but also for the general population. Furthermore, monitoring the movements in

a stock index is relatively more manageable in terms of time, and less demanding in terms

of the knowledge required from an average investor. These characteristics of stock indices

have made them popular in many markets across the globe. Hence, predicting the trend

in an index from past data could help investors, especially novices. With that we come

across financial crashes and its unique phenomena in financial industries due to its high

interest worldwide. However, stock index values are noisy and non-stationary, with trends

and periodic changes introduced by numerous factors affecting each constituent stock. Due

to the non-linear, volatile and complex nature of the stock market, it is quite difficult to

forecast. However, data analysts believe that the future stock market price can be predicted

using historical stock market prices and past data. Data analysis uses multiple charts and

calculations to find trends in the historical stock market data, which aims to predict the

direction of the future price. The S&P 500 or Standard & Poor’s 500 Index is a market-

capitalization-weighted index of the 500 largest U.S. publicly traded companies. The index

is widely regarded as the best gauge of large-cap U.S. equities. We take the financial time
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series forecasting and its tool function with Neural Networks on forecasting crashes and

other data sets. However, one of the main problems in the time series forecasting with

the use of neural networks is we find the presence of noisy data. Which may become very

difficult to extrapolate. By using special interpolation techniques and deep learning, it is

possible to generate extra noisy data with superior accuracy. The objective in the time

series forecasting is to use historically observed values of a quantity of interest in order

to devise a model of its behaviour, which can be used to forecast future values over a

short or long term period. With applications such as data mining, the growth of artificial

intelligence, machine learning, statistics and database systems. Time series forecasting

may be applied to data sets from various fields such as physics, engineering, and finance.

Applications of time series analysis in a financial context include credit rating analysis,

bankruptcy prediction, stock selection, stock index prediction. [1] There are many reasons

to explain this phenomenon, first the growth of quantitative analysis which moved from

manual work to artificial intelligence, with current work on Deep learning achieving great

progress on natural language processing and presently continues to have great performances

in various ranges of sciences. Throughout time we have evolved, were now historical data

is becoming of great meaningful value.

The stock market prediction can be divided into two main focusing categories: data and

model. A general linear process is a mathematical model for time series data applied when

the successive values rt , are regarded as being generated based on a series of independent

inputs, at. If the sequence of inputs is such that each is drawn (i.i.d.) from a normal

distribution with mean zero and constant variance σ2
a; the model is called a white noise

process. This is a state-of-art method, which can provide a complex, nonlinear fit to the

data, but at the same time it is good for guarding against over-fitting. This is very im-

portant when dealing with noisy financial time series data. The stock market is constantly

changing all the time and large fluctuations happen daily in the stock exchange, which

intuitively neural networks and their properties shows great capacities. The majority of

related studies on the application of machine learning techniques such as neural networks
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to forecasting stock market have focused on forecasting the direction of a given stock past

movements. Artificial intelligence or AI could be the new solution to tackle the forecasting

on the stock market. In May 2017, the latest version of Google AlphaGo2 beat the worlds

best human Go player, Jie Ke, through the perfect deep learning method. (Google) With

some introduction to steps taken on applications on forecasting a stock market crash start-

ing of with optimization process applied, along with neural networks, deep learning and

other supporting methodologies. Early research on stock market prediction was based on

the Efficient Market Hypothesis (EMH) [2] and the random walk theory [3, 4, 5]. Accord-

ing to the theory of random walks and market efficiency, the future direction of a stock

is no more predictable than the path of a series of cumulative random numbers.[6] Some

researchers suggest that stock prices moves by the theory of random walk, that is that

the future path of the price of a stock is not any more predictable than random numbers.

However, stock prices do not follow random walks is heavily cited by authors papers that

claim, considerable empirical evidence exists that show how the stock returns are to some

extent predictable. This means that we can make the basic assumption that past behaviour

of a stock price is rich in information, and may show signs of future behaviour. Some claim

to have shown that history is repeated in patterns, and that some of the patterns tend to

recur in the future. Since there are patterns, it is possible through analysis and modeling to

develop an understanding of such patterns. These patterns can further be used to forecast

the future behaviour of stock prices. To continue the analysis on a time series, we can

see a time series may be observed as a stationary time series, it can be described by its

mean, variance, and autocorrelation function or spectral density function [7]. A strictly

stationary time series rt requires that the joint distribution of (r1, ..., rk), for an arbitrary

positive integer k, be time-invariant. A time-invariant system refers to a system that has

a time-dependent system function, that is not a direct function of time. Furthermore,

time-dependent system function is a function of the time dependency input. However, as

this notion of strict stationarity is difficult to verify empirically, weak stationarity (also

known as second-order stationarity, covariance stationarity, or wide-sense stationarity) is

3



often used. In this case, the mean E(rt) does not depend on t, and the covariance between

rt1 and rt2 only depends on the difference t2 − t1. An important aspect of the forecasting

task is represented by the size of the horizon. If the one-step forecasting on a time series

is already a challenging task, performing multi-step forecasting is more difficult because

of additional complications, like accumulation of errors, reduced accuracy, and increased

uncertainty and perhaps some missing values. The forecasting domain has been influenced,

for a long time, by linear statistical methods such as ARIMA models. Around the late 1970s

to 1980s, an increasingly amount of notice was made on how linear models are not always

adaptable to many real world applications. It is recorded that around the same time period,

some useful nonlinear time series models were proposed such as the bilinear model, and the

threshold autoregressive model (see for review [23] and [25]). Within the last two decades,

machine learning models have drawn attention and have established themselves as serious

contenders to classical statistical models in the forecasting community. Some of these mod-

els, also called black-box or data-driven models, are examples of nonparametric nonlinear

models which use only historical data to learn the stochastic (randomly determined; having

a random probability distribution or pattern that may be analyzed statistically but may

not be predicted precisely) dependency between the past and the future. On one of my first

literature review on Generalization of Backpropagation with application to Recurrent model

by Werbos , P.J. he found that Artificial Neural Networks (ANNs) outperform the classical

statistical methods such as linear regression and Box-Jenkins approaches [29]. Which has

concluded that ANNs can be successfully used for modeling and forecasting nonlinear time

series, leading us to the motivation of this research in using the various Neural Networks

methodologies available. In this study we have worked with two different problems, 1)

we use machine learning techniques to predict Credit Default payment and Stock Market

evolution and crashes (chapters 2-4), 2) How to impute missing values in a data set with

imputations methods and along with neural network methodologies (chapter 5).
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1.1 Motivation

Artificial neural networks are motivated by the learning capabilities of the human brain

which consists of neurons interconnected by synapses. In fact at least theoretically they are

able to learn any given mapping up to arbitrary accuracy [?, HSW89]. For as long as we

have stock markets, the prediction of stock markets will only continue, with the increase

of historical data available. Stock prices are considered to change quite frequently due to

the financial domain and the factors affecting the company etc. Different kinds of financial

time-series have been recorded and studied for decades. Nowadays, all transactions on

a financial market are recorded, leading to a huge amount of data available, either for

free in the Internet or commercially. Financial time-series analysis is of great interest to

practitioners as well as to theoreticians, for making inferences and predictions. In the recent

years, efforts have been put into applying machine learning to forecasting the stock market,

however, most impressive work is the promising work it continues to show in various sciences

(e.g. Health and Medicine field). For the remaining chapters we will see the following

structure, chapter two introduction to time series and some of applications applied with

some basic notions of time series modeling and the formalization of the forecasting task

as an input-output problem. Chapter three we will introduce methodologies used for our

research data, which will be talked about on chapters four and five. Finishing with chapter

six with conclusions and remarks. The main goal of this study is to determine whether or

not it is possible to make a profitable predictions using machine learning methodologies

with its wide range of operations not only on financial data but on various of data sets.
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Chapter 2

Time Series

In this chapter, we will give a summary of the background knowledge related to the Time

Series along with its application on this thesis. The usage of time series models is two:

1. Obtain an understanding of the underlying forces and structure that produced the

observed data.

2. Fit a model and proceed to forecasting, monitoring or even feedback and feedforward

control.

The definition of Time Series is a sequence of observations on a variable measured at

successive n points in time or over successive periods of time. It is mathematically defined

as x(t), t = 0, 1, 2, ... where t represents the time elapsed. The measurements taken during

an event in a time series x(t), are arranged in a proper chronological order. Where each

observation can be continuous or discrete. In a continuous time series, observations are

measured at every instance of time. Whereas a discrete time series, contains observations

measured at discrete points of time. For example temperature readings, flow of a river,

concentration of a chemical process etc. can be recorded as a continuous time series. On the

other hand, population of a particular city, production of a company, and exchange rates

between two different currencies may represent discrete time series. If the future values of

a time series can be exactly determined using a mathematical function, then it is called

deterministic. A time series whose future values can only be described by a probability

distribution is said to be a statistical time series. The term stationary time series is used

to denote a time series whose statistical properties are independent of time, as mentioned

previously check [7] for a formal definition of stationary. This means that,
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Figure 2.1: Dow Jones 100 year historical chart.

1. The process generating the data has a constant mean,

2. The variability of the time series is constant over time.

above we find the time series Dow Jones industrial Average stock market index for the

last 100 years figure. A time series plot for a stationary time series will always exhibit a

horizontal pattern. But simply observing a horizontal pattern is not sufficient evidence to

conclude that the time series is stationary. As we can view on figure 2.1, although time

series data generally can exhibit random fluctuations, a time series may also show gradual

shifts or movements to relatively higher or lower values over a longer period of time.

If a time series plot exhibits this type of behavior, we say that a horizontal pattern exists.

The trend of a time series can be identified by analyzing multi-year movements in historical

data. Seasonal patterns are recognized by seeing the same repeating patterns over successive

periods of time, some time series include a combination of a trend and seasonal pattern.

For a horizontal pattern there exists data that fluctuate around a constant mean. With

seasonal pattern exists if the time series plot exhibits a repeating pattern over successive

periods. The successive periods are often one-year intervals, which is where the name

seasonal pattern comes from. Finally, we look at cyclical pattern existing if the time series

7



plot shows an alternating sequence of points below and above the trend line lasting more

than one year. The underlying pattern in the time series is an important factor in selecting

a forecasting method. Thus, a time series plot should be one of the first things developed

when trying to determine what forecasting method to use. Time series is used in various

sectors nowadays such as economics, finance, environment, education and health [8]. One

possible objective in analyzing a time series, especially in an economic context, is to predict

accurately the future value of an observed time series. The trend is calculated by average,

from long term movement using symmetric moving average. If it is a seasonal effect, it can

be estimated using centered-moving average. A moving average is a calculation used to

analyze data points, by introducing a series of averages from different parts of the complete

data. The moving average applied repeatedly to a time series, can create artificial cycles

to smoothen the data. We can write a time series as {x1, x2, ...xT} or xt, t = 1, 2, ...T ,

we will treat xt as a random variable as stated before. As for selecting a forecasting

method, a key concept associated with measuring forecast accuracy is the forecast error,

defined as Forecast Error = Actual Value - Forecast. Due to the positive and negative

forecast errors tend to off-set one another, the mean error is likely to be small; thus, the

mean error is not a very useful measurement of forecast accuracy. The mean absolute error,

denoted as MAE, is a measurement of forecast accuracy that avoids the problem of positive

and negative forecast errors offsetting one another. As you might expect given its name;

MAE is the average of the absolute values of the forecast errors. Another measurement

that avoids the problem of positive and negative forecast errors off-setting each other is

obtained by computing the average of the squared forecast errors. This measure of forecast

accuracy, referred to as the mean squared error, denoted as MSE = average of the sum of

squared forecast errors. To make comparisons like these we need to work with relative or

percentage error measures. The mean absolute percentage error, denoted MAPE is such

measurement. To compute MAPE we must first compute the percentage error for each

forecast. Unfortunately, there is no way to address the issue of accuracy associated with

forecasts for future time periods. But if we select a forecasting method that works well for

8



the historical data, and we think that the historical pattern will continue into the future,

we should obtain results that will ultimately be shown to get factual results. For every

measure done, the average of the past values provides more accurate forecasts then using

the most recent observation as the forecast for the next period. In general, if the underlying

time series is stationary, the average of all the historical data will always provide the best

results. With the various number of shifts occurring we get a new level to the series that

arise, it will take longer time for the forecasting method that uses the average of all the

historical data to adjust to the new level of the time series. But in most cases, the simple

naive method adjusts very rapidly to the change n level because if uses the most recent

observation available as the forecast.

Figure 2.2: Decomposition of multiplicative time series.

The fitting of the Time series models can be an earnest undertaking. There are many

9



methods of model fitting, two main interpretations of the forecasting problem on the basis

of historical data set exist. There are three main forecasting methods that are appropriate

for a time series with a horizontal pattern which is found in our time series data: moving

averages, weighted moving averages, and exponential smoothing. The objective of each

of these methods is to ”smooth out” the random fluctuations in the time series, usually

referred to as smoothing methods. These methods are some of the simplest methods to

use, they generally provide a high level of accuracy for the short-range of forecasts, such

as forecasting for the next time period. For the moving averages method : let us quickly

define function f(x) and let it be some window size s > 0. The moving average of f is the

function Af(x) defined by:

Af(x) =
1

s

∫ x+s/2

x−s/2
f(t)dt,

where A is the ”averaging operator”. This is an example of a functional transform:

it takes one function f and puts out another function Af . The 1/s term ensures that if

f is a constant, then Af is the same constant. We can then apply the moving average

several times in order to improve the behaviour of a function. However, it is possible to

make operators which work better in a single step. For example, consider the following

triangular weighted moving average:

Wf(x) =

∫ x+s/2

x−s/2
w(x− t)f(t)dt,

where the weight function is

w(x) =

4x/s2 + 2/s −s/2 ≤ x ≤ 0,

2/s− 4x/s2 0 ≤ x ≤ s/2.

10



Then if we apply this to the jump function, the outcome is piecewise quadratic:

Wf(x) =



0 < x < −s/2,

2(x/s+ 1/2)2 −s/2 ≤ x ≤ 0,

1− 2(x/s− 1/2)2 0 ≤ x ≤ s/2

1 x > s/2.

A more successful method, that turns any integrable function into a infinitely differentiable

( i.e. perfectly smooth) is the Gaussian blur, noted as follows:

Gf(x) =

∫ ∞
−∞

g(x− t)f(t)dt,

where g is just the Gaussian probability density function,

g(x) =
1

s
√

2π
e−

x2

2s2

for some constant s > 0. (i.e. this corresponds to an ”infinite window”) The usage of the

average on the most recent k data values in the time series as the forecast for the next

period. Mathematically, moving average forecast of the order k is as follows:

Ft+1 =
t∑
k

(most recent k)

k
=
Yt + Yt−1 + ...+ Yt−k+1

k
,

where Ft+1 = forecast of the time series for period t + 1 ; Yt = actual value of the time

series in period t. The term moving averages is used because every time a new observation

becomes available for the time series, it then will be replaced by the oldest observation in

the equation and a new average is computed. The result of the average will change, or move,

as new observations become available. To be able to use the moving averages to forecast a

time series, we must first select the order, or number of time series values, to be included

in the averaging. If only the most recent values of the time series are considered relevant,
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then a small value of k is preferred. Now if more past values are considered relevant, now

a larger value of k would work better. Recall that a time series with a horizontal pattern

can shift to a new level over time. A moving average will adapt to the new level of the

series and resume on providing forecasts in k periods. Furthermore, the smaller value of k

will track shifts in a time series quickly rather than in the case of larger values of k will be

more effective in smoothing out the random fluctuations over time.

On the second method for forecasting we have weighted moving averages, on this method

we take each observation in the moving average calculation receives the same weight, involve

it by selecting a different weight for each data value and then computing a weighted average

of the most recent k values as the forecast. For most cases, the most recent observation

receives the most weight, and the weight decreases for older data values. In technical

analysis of financial data, a weighted moving average (WMA) has the specific meaning of

weights that decrease in arithmetical progression.[4] In an n day WMA the latest day has

weight n, the second latest n− 1, etc., down to one.

WMAM =
npM + (n− 1)pM−1 + ...+ 2p(M−n+2) + p(M−n+1)

n+ (n− 1) + ...+ 2 + 1
.

When we are calculating the WMA across successive values, we get the difference between

the numerators of WMAM+1 and WMAM is npM+1 − PM−, , ,−pM−n+1. Denote the sum

of PM + ...+ pM−n+1 by the TotalM , then we have the following:

TotalM+1 = TotalM + pM+1 − pM−n+1

NumeratorM+1 = NumberatorM + npM+1 − TotalM ,

WMAM+1 =
NumberatorM+1

n+ (n− 1) + ...+ 2 + 1
.

To follow with a quick example, WMAs can have different weights assigned based on

the number periods used in the calculation. If we want a weighted moving average of four

different prices, then the most recent weighting could be 4/10, the period before could have
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Figure 2.3: Weighted moving average.

a weight of 3/10, the period prior to that could have a weighting of 2/10, and so on. Now

lets assume the following prices of 90,89,88,89, with the most recent price first. You would

calculate this as

[(90× (4/10) + (89× (3/10)) + (88× (2/10)) + 89× (1/10))]

= 36 + 26.7 + 17.6 + 8.9 = 89.2.

Recall that we can change weights around to have better average according to information

provided.

Another most commonly used method we have Exponential smoothing, which also uses

weighted average of the past time series values as a forecast, so we will similarities with

the WMA method. It is a special case for the weighted moving averages method in which

we select only one weight-by the weight for the most recent observation. The weights for

the other data values are computed automatically and become smaller as the observations
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move farther into the past. The Exponential smoothing equation as follows:

Ft+1 = αYt + (1− α)Ft

where, Ft+1 = forecast of the time series for period t + 1, with Yt= actual value of the

time series in period t. Following with Ft = forecast of the time series for period t , α =

smoothing constant (0 ≤ α ≤ 1) . For forecast accuracy in the exponential smoothing

calculations we use a smoothing constant of α = .2. Although any value of α between

0 and 1 is acceptable, some values will yield better forecasts than others. Insight into

choosing a good value for α can be obtained by rewriting the basic exponential smoothing

model as follows:

Ft+1 = αYt + (1− α)Ft

Ft+1 = αYt + Ft − αFt,

Ft+1 = Ft + α(Yt − Ft).

Therefore, we have the new forecast Ft+1 is equal to the previous forecast Ft plus an

adjustment, which is a smoothing constant α times the most recent forecast error, Yt−Ft.

Moveover, that the forecast in period t+ 1 is obtained by adjusting the forecast in period t

by a fraction of the forecast error. As we have expressed some of the components of a Time

Series, in practice a suitable model is fitted to a given time series and the corresponding

parameters are estimated using the known data values. The procedure of fitting a time

series to a proper model is termed as Time Series Analysis, which goes in hand with our data

analysis and when analyzing a given set of data recommended adhering are the following

steps: 1) exploratory data analysis and 2) confirmatory data analysis. It comprises methods

that attempt to understand the nature of the series and is often useful for future forecasting

and simulation. The simple exponential smoothing method requires little computation, and

it is used when data pattern neither have not a cyclic variation nor trend in the historical

data. With the single exponential smoothing method gets smoothing curve using only one
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actual past value and one predicted past value, as follows:

St = αyt−1 + (1− α)St−1.

Where, St represents the predicted value (or smooth value) when T = 1, and St−1 meaning

that the smooth value when T = t−1. Then yt−1 represents the actual value of series when

T = t−1 , with α, ranges from 0 to 1, is the smoothing parameter. Which from there we get

the representation of the smoothing of the series. One significant advantage of exponential

smoothing method is computational efficient when dealing with mass of data. An extension

to the exponential smoothing we have the Double exponential smoothing method. Double

exponential allows forecasting values and anticipating a trend, the formulation for the

Double Exponential method given by:

St = αyt + (1− α)(St−1 + T(t− s)

Tt = γ(St + St−1) + (1− γ)Tt−q.

ŷt(k) = St + kTt.

Where St and Tt are the smoothed level and trend; and α and γ are the smoothing

parameters. We have yt being the actual value of the time series in period t; and ŷt(k) is

the k step - ahead forecast made from the forecast origin t. We also extend this to Triple

Exponential smoothing, has two models of computation, that is additive and multiplicative

manner. The additive model calculations performed if the plot of the original data showed

some seasonal fluctuations. As for multiplicative models are used when the plot of the

original data showed seasonal fluctuations variations. Below find the equations used for

additive model where L represents the level of estimate influenced by the amount of α, and

T are the trend estimate influenced by the β, and S, and p represents the trend period,

l is the length, Y is the actual data, as ŷ means the value of the forecast for the coming
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period; and f is for the seasonal estimate series.

Lt = α(Yt − St−1) + (1− α)(Kt−1 − Tt−1)

Tt = β(Lt + Lt−1) + (1− β)Tt−1|.

St = γ(Yt + Lt) + (1− γ)St−l,

ˆyt + p = Lt + pTt + St−l+p.

2.1 Data Analysis

Data analysis is the process of exploring through the data set, cleaning, transforming and

making supporting decision-making on further modeling. First we start by defining the type

of data we are dealing with, which are two types. Qualitative data, which is represented

either in verbal or narrative format. These types of data are collected through focus

groups, interviews, opened ended questionnaire items, and other less structured situations.

A simple way to look at qualitative data is to think of qualitative data in the form of words.

Quantitative data is data that is expressed in numerical terms, in which the numeric values

could be large or small. Numerical values may correspond to a specific category or label.

As for when it comes to analyzing given set of data within an overall scientific investigation,

adhering to the following two steps:

• exploratory data analysis

• confirmatory data analysis

The main purpose of the exploratory data analysis phase of data analysis is to discover

important statistical properties in the given observations by carrying out simple graphical

and numerical studies. As for the objective of the confirmatory data analysis stage is to

confirm statistical in a rigorous fashion the absence or presence of certain properties in the
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data. Once we have analysed the data we then move on with modeling of the time series

data. Having two types of time series data, to univariate and multivariate data. One may

classify multivariate methods with regard to whether they are atheoretical (unrelated to

or lacking a theoretical basis), such as time-series models, or structural or theory-based.

Multivariate models have more parameters than univariate ones. Every additional pa-

rameter is an unknown quantity and has to be estimated. This estimation brings in an

additional source of error due to sampling variation. Outliers can have a more serious effect

on multivariate than one univariate forecasts. Along with an important exploratory tool

for modeling multivariate time series is the cross-correlation function (CCF). The CCF

generalizes the autocorrelation function to the multivariate case. Thus, its main purpose

is to find linear dynamic relationships in time series data that have been generated from

stationary processes. In analogy to the univariate case, a multivariate process, Xt is called

(covariance) stationary if,

1.EXt = µ

i.e the mean is a time-constant n -vector;

2.E(Xt − µ)(Xt − µ)
′
=
∑

,

i.e. the variance is a time-constant positive definite n× n matrix
∑

3.E(Xt − µ)(Xt+k − µ)
′
= Γ(k),

i.e. the covariance is over time depend on lag only, with non-symmetric n × n- matrices

Γ(k).

Recall that for a univariate time series, as the name suggests, is a series with a single

time-dependent variable. As for Multivariate Time Series (MTS), it has more than one

time-dependent variable. Each variable depends not only on its past values but also has

some dependency on other variables. This dependency is used for forecasting future values.
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For coming all of the information to this point we come across the importance re-framing

of the time series data, which allows us to access the suite of standard linear and nonlinear

machine learning algorithms on our problem. Along with preparing our data for forecasting,

that is separation of data to training data and test data, as we move forward this will be

elaborated on. This brings to the sliding window method for framing a time series modeling

for forecast. In the sliding window method, a window of specified length, Len, moves over

the data, sample by sample, and the statistic is computed over the data in the window.

The output for each input sample is the statistic over the window of the current sample

and the Len - 1 previous samples. In the first-time step, to compute the first Len - 1

outputs when the window does not have enough data yet, the algorithm fills the window

with zeros. In the subsequent time steps, to fill the window, the algorithm uses samples

from the previous data frame. The moving statistic algorithms have a state and remember

the previous data. The application to the sliding window or lag method for multivariate

data and multi-step forecasting. Which this becomes of importance when dealing with a

multivariate data-set with missing values as that found in Los Alamos research project

done at the being of summer. Coming along we see the important role of data assembling

before moving forward with any other applications done, when dealing with missing values

within the data-set; imputation methods are to be dealt with before moving forward with

training data set and forecasting methods.

2.2 Missing values

In time series data, if there are missing values, there are two ways to deal with incomplete

data :

• omit the entire record that does not contain information.

• Impute the missing information.

Before moving forward lets review why omitting data is not in our best interest, by
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discarding any case that has a missing values, which may introduce bias or affect the

representativeness of the results. Before moving forward with imputation methods, lets

classify the time series according to composition. If we decompose the time series data

with linear regression model for example we have Yt = mt + st + εt. Where mt stands

for trend, st stands for seasonal, and εt stands for random variables. As mentioned before,

the importance on looking at the type of trend the time data set produces, before moving

forward with forecasting. Formal description on imputation, in statistics imputation is

the process of replacing missing data with substituted values. When substituting for a

data point, it is known as ”unit imputation”, when replacing a component of a data point,

it is known as ”item imputation”. As for non-time-series specific imputation methods

we have mean imputation, median imputation, and mode imputation; which calculate the

appropriate measure and replaces NA′s (unavailable data) with the values. Imputation is a

method to fill in the missing values with estimated ones. The objective is to employ known

relationships that can be identified in the valid values of the data set to assist in estimating

the missing values. As previously stated, Mean / Mode / Median imputation are one of

the most frequently used methods. It consists of replacing the missing data for a given

attribute by the mean or median (quantitative attribute) or mode (qualitative attribute)

of all known values of that variable. For not only we encounter the idea of missing data

but there is also different types of missing data. (MCAR) Missing Completely at Random;

means that the probability that an observation is missing is not related to its value or to any

other values in the data set. Missing at Random (MAR) means that the probability that an

observation is missing is related to the values for some other observed variables. Finally, we

have (MNAR) missing not at random, meaning that the probability that an observation is

missing is related to its value. Depending on the proportion and the generating mechanism

of missing data. We have three main problems that missing data causes: missing data can

introduce a substantial amount of bias, make the handling and analysis of the data more

arduous, and create reductions in efficiency. For imputation preserves all cases by replacing

missing data with an estimated value based on other available information. Now applying
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time to a data-set will likely increase the amount of missing data throughout time collecting.

Once all missing values have been imputed (that is, filled in) the data set can then be

analysed using standard techniques via neural networks for complete data. It is probably

a popular misunderstanding that the goal of imputation is to predict individual missing

values. This is popular because of hot deck imputation method ( hot deck imputation is a

method for handling missing data in which each missing value is replaced with an observed

response from a similar unit), which the attempt to find the best match for each missing

case. A better estimate for each missing value not necessarily leads to a better overall

estimate for the parameters of interest. So here is a counterexample given by Rubin (1996):

suppose we have a coin that, in truth, is biased .6 heads and .4 tails. This known truth

model A, whereas model B asserts that the coin has two heads. Using model A for creating

imputations (i.e., future predictions) yields a hit rate (agreements between predictions and

outcomes) of .6.6 + .4.4 = .52, whereas using model B for predictions yields a hit rate of

.6. This does not mean that model B is better than model A for handling missing values.

Filling in missing values using model B yields the invalid statistical inference that in the

future all coin tosses will be heads, clearly inconsistent for the estimand Q = fraction

of tosses that are heads, whereas using model A yields consistent estimates for all such

scientific estimands. In R, missing values are indicated by NAs. In classical regression (as

well as most other models), R automatically excludes all cases in which any of the inputs

are missing; this can limit the amount of information available in the analysis, especially

if the model includes many inputs with potential missingness, leading us to a complete-

case analysis. Missing outcomes in a regression can be handled easily by simply including

the data vector, NAs and all. To decide how to handle missing data, it is helpful to

know why they are missing. Here are the three main concepts on missing values, we have

MCAR, MAR, and MANAR; to consider before moving forward on completing the data

for further analysis. Rather than removing variables or observations with missing data,

another approach is to fill in or impute missing values. A variety of imputation approaches

can be used that range from extremely simple to rather complex. These methods keep the
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full sample size, which can be advantageous for bias and precision; however, they can yield

different kinds of bias. A single imputation strategy is used, the standard errors of estimates

tend to be too low. The intuition here is that we have substantial uncertainty about the

missing values, but by choosing a single imputation we in essence pretend that we know

the true value with certainty. It is common to have missing data in several variables in an

analysis, in which case one cannot simply set up a model for a single partially observed

variable y given a set of fully observed X variables. More generally, we must think of the

data-set as a multivariate outcome, any components of which can be missing. A direct

approach to imputing missing data in several variables is to fit a multivariate model to all

the variables that have missingness, thus generalizing the approach to allow the outcome

Y as well as the predictors X to be vectors. The most difficult part on this approach

is that it requires a lot of effort to set up a reasonable multivariate regression model.

Most commonly the multivariate normal or t distribution for continuous outcomes, and a

multinormal distribution for discrete outcomes.
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Chapter 3

Methodologies

Before going into further explanation on forecasting methods, and how they may be classi-

fied as qualitative or quantitative data-sets. As mentioned on previous chapter qualitative

methods generally involve the use of expert judgment to develop forecasts. Such meth-

ods are appropriate when historical data is on the variable being forecast are either not

applicable or unavailable (Na). Quantitative forecasting methods can be used when (1)

past information about the variable being forecast is available, (2) the information can be

quantified, and (3) it is reasonable to assume that the pattern of the past will continue into

the future. When all of these align a forecast can be developed using a time series method.

The objective of time series analysis is to discover a pattern in the historical data or time

series and then extrapolate the pattern into the future; the forecast is based solely on past

values of the variable and/or on past forecast errors.

Stock market prediction has attracted much attention from both academia and business,

and the question remains: ”To what extent can the past history of a common stocks price

be used to make meaningful predictions concerning the future price of the stock?” [2].

Neural networks can adapt to changing input so the network generates the best possible

result without needing to redesign the output criteria. Using machine learning methods for

time series forecasting, with the intuition behind this approach is that machine learning

can provide complex, non-linear models, but without the difficulty in fitting such models

encountered in the financial time series. Let us begin by talking about sequence problems.

The simplest machine learning problem involving a sequence is a one to one problem, as

shown in figure [3.1]. As we continue the process of chapter 3, we will continue introducing

the machine learning methodologies applied to our three data-sets.
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3.1 Simple Neuron

Lets start with the introduction to a neuron with a single scalar input and no bias is

shown below. 3.1.

Figure 3.1: One to one system

The scalar input p is transmitted through a connection that multiplies its strength by

the scalar weight w, to form the product w ·p, again a scalar. Here the weighted input w ·p

is the only argument of the transfer function f , which produces the scalar output a. The

neuron on the right has a scalar bias, b. You may view the bias as simply being added to

the product wp as shown by the summing junction or as shifting the function f to the left

by an amount b. The bias is much like a weight, except that it has a constant input of 1.

The transfer function net input n, again a scalar, is the sum of the weighted input

wp and the bias b. This sum is the argument of the transfer function f . Three of the most

commonly used functions are shown below. Sigmoid transfer function is commonly used in

backpropagation networks, in part because it is differentiable.
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3.1.1 Neuron With Vector Input

A neuron with a single R-element input vector is shown below. Here are the individual

element inputs

p1, p2, ..., pR,

are multiplied by the weights

w1,1, w1,2, ..., w1,R

and the weighted values are feed to the summing junction. Their sum is simply W · p, the

dot product of the (single row) matrix W and the vector p.

Figure 3.2: Neuron With Vector Input

The neuron has a bias b, which is summed with the weighted inputs to form the net

input n. This sum, n, is the argument of the transfer function f .

n = w1,1p1 + w1,2p2 + ...+ w1,RpR + b.

This expression can, of course, be written in as

n = W · p+ b
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3.1.2 A Layer of Neurons

Here we have a one-layer network with R input elements and S neurons as follows. In this

Figure 3.3: A Layer of Neurons

network, each element of the input vector p is connected to each neuron input through the

weight matrix W . The ith neuron has a sum that gathers its weighted inputs and bias, to

form its own scalar output n(i). The various n(i) taken together form an S-element net,

input vector n. Finally, the neuron layer outputs form a column vector a.

The input vector elements enter the network through the weight matrix W .

W =


w1,1 w1,2 ... w1,R

w2,1 w2,2 ... w2,R

...

wS,1 wS,2 ... wS,R


The row indices on the elements of matrix W indicate the destination neuron of the

weight, and the column indices indicate which source is the input for that weight. Thus, the

indices say that the strength of the signal from the second input element to the first (and

only) neuron is. The S neuron, R input one-layer network also can be drawn in abbreviated

notation. Here p is an R length input vector, W is an S × R matrix, with a and b are
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S length vectors. As defined previously, the neuron layer includes the weight matrix, the

multiplication operations, the bias vector R, the sum and the transfer function boxes.

a = f(Wp+ b). (3.1)

3.1.3 Multiple Layers of Neurons

To move into a bigger network we can have several layers. Each layer has a weight matrix

W , a bias vector b, and an output vector a. To distinguish between the weighted matrices,

output vectors, etc.. For each of these layers in our figures, we append the number of the

layer as a superscript to the variable of interest. You can see the use of this layer notation

in the three-layer network shown below, and in the equations at the bottom of the Fig. 3.4.

Figure 3.4: Multiple Layers of Neurons

The layers of a multilayer network play different roles, for a layer that produces the

network output is called an output layer. All other layers are called hidden layers. The

three-layer network shown earlier has one output layer (layer 3) and two hidden layers

(layer 1 and layer 2). Some authors refer to inputs values as a fourth layer. We will not

use that designation. The same three-layer network discussed previously also can be drawn
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using our abbreviated notation.

We have the output of the neural network that can be calculated in the following way

y = a3 = f 3(LW 3,2f 2(LW 2,1f 1(IW 1,1p+ b1) + b2) + b3), (3.2)

where IW 1,1 is the weight matrix of the layer 1, LW 2,1 is the weight matrix of the layer 2,

and LW 3,1 is the weight matrix of the layer 3. Biases of the layers are b1, b2, b3. Multi-layer

neural network are powerful models with non-convex objective functions. Although our

convergence analysis does not apply to non-convex problems, we empirically found that

Adam optimizer often outperforms other methods in such cases. Which later application

will be shown along with a neural network model with two fully connected hidden layers

with 1000/ (we can change number and analysis results) hidden units each and ReLU ac-

tivation are used.

3.2 Rolling-Window Analysis of Time Series Models

Suppose that we have some data that for all periods in the sample [9].

1. Choose a rolling window size, m ;i.e., the number of consecutive observation per

rolling window. The size of the rolling window depends on the sample size, T , and

periodicity of the data. In general, we can use a short rolling window size for data

collected in short intervals, and with a larger size for data collected during longer

intervals. Longer rolling window sizes will tend to yield.

2. Choose a forecast horizon ,h. The forecast horizon depends on the application and

periodicity of the data. The following illustrates how the rolling window partitions

the data set.

3. If the number of increments between successive rolling windows is 1 period, then
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Figure 3.5: Rolling-Window for Time Series Analysis [10]

partition the entire data set into N = T − m + 1 subsamples. The first rolling

window contains observations for the period 1 through m, second rolling window

contains observations for period 2 through m + 1, and so on. The figure illustrates

the partitions.

For the remaining chapters, we will work with data sets where our goal is to forecast

a customer default on their credit card debt, along with the forecasting of a stock market

crash on 9 different countries. The application of imputation on a missing values data

set with our Educational data, and with further applications done with the simulation of

educational data via neural networks

3.2.1 Sliding Window

Sliding window approach, is a window of suitable size, say m × n is chosen to perform a

search over the target image a process. The whole cross-sectional data set is divided into
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Figure 3.6: One-step ached forecasting

different training windows by specifying the window width. A model is trained using a

training window and applied on the testing window to compute the performance for the

first run. For the next run, the training window is slide to new set of training records and

the process is repeated until all the training windows are used. Using this method we take

average across the entire data set for metric performance. With neural networks input

presentation through a sliding window allows to include all the local information conducive

to a given output. Constructing a window classifier hw that maps an input window of width

w into an individual output value y. More precise, let d = (w − 1)/2 be the ”half-width”

of the window. Then we have hw that predicts yi,t using the window

〈xi,t−d, xi,t−d+1, ..., xi,t, .., xi,t+d−1, xi,t+d〉.

hw the window classifier is trained by converting each sequential training example (xi, yi)

into windows and then applying a standard supervised learning algorithm. Then a new

sequence x is classified by converting it to windows, applying hw to predict each yt, then

concatenating the y′ts to form the forecasting sequence of y.

29



3.3 Optimization Methods

Deep learning\ machine learning, is an iterative process. With so many parameters to tune

or methods to try, it is important to be able to train models fast, in order to quickly complete

the iterative cycle. This is key in increasing the speed and efficiency of a machine learning

algorithms. Hence, the importance of optimization algorithms such as stochastic gradient

descent, backpropagation (gradient descent), and the Adam optimizer, along others come

of extreme importance. These methods make it possible for our neural network to learn

with greater accuracy.

3.3.1 Stochastic gradient descent and generalizations

If when, each step is taken after training on only 1 data point, this process is called

stochastic gradient descent. Recent studies have shown that this method is not very good,

because it often takes steps in the wrong direction and it will not converge to the global

minimum; it will instead oscillate around the global minimum. With objective function

that has the form of a sum:

Q(w) =
1

n

n∑
i=1

Qi(w),

where the parameter w that minimizes Q(w) is to be estimated. Each summand function

of Qi is typically associated with the ith observation in the data set (used for training).

3.3.2 Backpropagation (Gradient descent) and generalizations

Through supervised learning of an artificial neural networks using gradient descent. Its

value of the neural network can be computed. (3.2). Given an artificial neural network and

an error function, the method calculates the gradient of the error function with respect to

the neural networks weights. Then we let x be a vector of input values and ŷ = f(x,W, b)

is a vector of the output values. For every initial values x(1), x(2), ..., x(n) it is possible to

compare experimental output y(1), y(2), ..., y(n) and the values given by the neural network
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Figure 3.7: Graphical representation of the gradient decent method.

ŷ(1), ŷ(2), ..., ŷ(n). The goal of the learning process is minimization of the error.

E =
n∑
i=1

‖y(i) − ŷ(i)‖2 =
n∑
i=1

m∑
j=1

(y
(i)
j − ŷ

(i)
j )2 (3.3)

The gradient descent is the simplest case of finding minimum error.

We use the basic formulation and structure of the gradient descent,

xi+1 = xi − γ∇E(xi),

where γ is some constant.

By iterating through several passes and updating the weights in a direction that moves

the total error between target, and predicted errors towards the local minimum error of

the gradient surface. In presenter problem x is the vector of parameters (i.e. the weight

matrix and the bias matrix). In order to find minimum of the error E, it is continent to

find derivative with respect to the weight matrix W and bias vector b.
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The Partial derivatives of error with respect to weight matrix are as follows,
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(i)
j )2 =

n∑
i=1

m∑
j

2(y
(i)
j − ŷ
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Partial derivatives of error with respect to bias,

∂E

∂bi
=

n∑
i=1

m∑
j

∂

∂bi
(y

(i)
j − ŷ

(i)
j )2 =

n∑
i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂

∂bi
(y

(i)
j − ŷ

(i)
j ) =

∂E

∂bi
= −

n∑
i=1

m∑
j

2(y
(i)
j − ŷ

(i)
j )

∂ŷ
(i)
j

∂bi
.

Derivatives
∂ŷ

(i)
j

∂wi,j
,
∂ŷ

(i)
j

∂bi
can be found by using the formulas below. The output values y can

be calculated by using the formula (3.1)

p(k+1) = f (k)(W (k)p(k) + b(k)),

where p(k+1) are values in the layer k+ 1, W (k) is the weight matrix of the layer k, b(k) is a

bias of the layer k, p(k) is an input value of the layer k, and f (k) is an activation function

of the layer k.

∂p(k+1)

∂wi,j
=

∂

∂wi,j
f (k)(W (k)p(k) + b(k)) =

= f ′(k)(n(k))

(
∂W (k)

∂wi,j
p(k) +W (k) ∂p

(k)

∂wi,j

)
,

where n(k) = W (k)p(k) + b(k).
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If wi,j is in W (k) then
∂p(k)

∂wi,j
= 0 and

∂p(k+1)

∂wi,j
= f ′(k)(n(k))

∂W (k)

∂wi,j
p(k).

If wi,j is not in W (k) then
∂W (k)

∂wi,j
= 0 and

∂p(k+1)

∂wi,j
= f ′(k)(n(k))W (k) ∂p

(k)

∂wi,j
.

If wi,j is in W (k−1) then
∂p(k−1)

∂wi,j
= 0 and

∂p(k)

∂wi,j
= f ′(k−1)(n(k−1))

∂W (k−1)

∂wi,j
p(k−1),

then

∂p(k+1)

∂wi,j
= f ′(k)(n(k))W (k) ∂p

(k)

∂wi,j
= f ′(k)(n(k))W (k)f ′(k−1)(n(k−1))

∂W (k−1)

∂wi,j
p(k−1).

If wi,j is not in W (k−1), then
∂W (k−1)

∂wi,j
= 0,

∂p(k)

∂wi,j
= f ′(k−1)(n(k−1))W (k−1)∂p

(k−1)

∂wi,j
.

Now it is necessary to find the derivative
∂p(k−1)

∂wi,j
, by using similar calculations.

Similar calculations can be applied to be bias.

∂p(k+1)

∂bi
=

∂

∂bi
f (k)(W (k)p(k) + b(k)) =

= f ′(k)(n(k))

(
W (k)∂p

(k)

∂bi
+
∂b(k)

∂bi

)
,
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where n(k) = W (k)p(k) + b(k).

If bi is in b(k) then
∂p(k)

∂bi
= 0 and

∂p(k+1)

∂bi
= f ′(k)(n(k))

∂b(k)

∂bi
.

If bi is not in b(k) then
∂b(k)

∂bi
= 0 and

∂p(k+1)

∂bi
= f ′(k)(n(k))W (k)∂p

(k)

∂bi
.

If bi is in b(k−1) then
∂p(k−1)

∂bi
= 0 and

∂p(k)

∂bi
= f ′(k−1)(n(k−1))

∂b(k−1)

∂bi
,

∂p(k+1)

∂bi
= f ′(k)(n(k))W (k)∂p

(k)

∂bi
= f ′(k)(n(k))W (k)f ′(k−1)(n(k−1))

∂b(k−1)

∂bi
.

If bi, is not in b(k−1) then
∂b(k−1)

∂bi
= 0 and

∂p(k)

∂bi
= f ′(k−1)(n(k−1))W (k−1)∂p

(k−1)

∂bi
.

Similarly, we can calculate the derivative of
∂p(k−1)

∂bi
.

3.3.3 Least square method

To apply the ordinary least squares (OLS) method, we apply the below formula to find the

equation:

m =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
,
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b = ȳ −m ∗ x̄.

Where x = independent variables and x̄ = average of independent variables, with y= de-

pendent variables, and ȳ = average of dependent variables. Lets solidify the basic concepts

in least squares regression, suppose we have some simple dataset, {(xi, yi), i = 1, ..., n},

where xi and yi are real numbers. Say our model of y is related to x which is given by

y = f(x;w) + e,

f(x;w) = w
′
φ(x).

Where φ : R−→Rd is a specified function which maps to x to a d-dimensional feature vector,

φ(x) = (φ1(x), ..., φd(x))
′
; w is a d-dimensional parameter vector w = (w1, ..., wd)

′
; e is the

prediction error, which we do not model explicitly. We will use w
′

to denote the transpose

of any vector w. In order to determine the least squared prediction error,

J(w) =
1

n

∑
i

(yi − f(xi;w))2.

Solution to this problem is ŵ = (X
′
X)−1X

′
y, where X = (φ(x1), ..., φ(xn))

′
is a n × d

matrix whose first row is φ1(x1), ..., φd(x1) and the last row is given by φ1(xn, ..., φd(xn);

The output vector y is defined as y is defined as y = (y1, y2, ..., yn)
′
. Assumption made on

matrix (X
′
X) is invertible so that the problem is well-posed, (i.e. there exists a unique

minimizer). This holds true for feature vectors φ(x1), ..., φ(xn) associated with the training

examples span the d− dimensional feature space. As the feature vectors are long and the

number of training points n is small. Now, for the estimate of ŵ the resulting prediction

errors êi = yi − f(xi; ŵ) should be ”uncorrelated” with features:

1

n

∑
i

êiφk(xi) = 0, k = 1, ..., d.
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As these conditions are obtained by taking the derivative of J(w) with respect to each

wi, i = 1, .., d, and setting them to zero. Make a note that the prediction error needs not

to be zero mean unless one of the features is a constant, i.e., say φ1 = 1 for all x, so that

1

n

∑
i

êφ1(xi) =
1

n

∑
i

êi = 0.

3.3.4 Adam optimizer

The Adam optimization algorithm is an extension to stochastic gradient descent, some of

Adams advantages are that the magnitudes of parameter updates are invariant to rescaling

of the gradient, its stepsizes are approximately bounded by the stepsize hyperparameter,

it does not require a stationary objective, it works with sparse gradients, and it naturally

performs a form of step size annealing. The procedure that has the adam optimizer at

better performance is due to its update network weights iterative based in training data.

The method computes individual adaptive learning rates for different parameters from

estimates of first and second moments of the gradients. (Diederik Kingma from OpenAI

and Jimmy Ba from University of Toronto 2015). These authors describe Adam having

two advantages over other extensions of stochastic gradient descent;

• Adaptive Gradient Algorithm (AdaGrad) which means that it maintains a per-

parameter learning rate that improves the performance on the problems with sparse

gradients. (e.g. natural language processing to most recent progress in the computer

vision problems).

• Root Mean Square Propagation (RMSProp) that also maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the

gradients form the weight (e.g. in how they quickly changing). Meaning that the

algorithm does well on online and non-stationary problems (noisy). Adam also makes

use of the average of the second moments of the gradients (the uncentered variance).
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Specifically, the algorithm calculates an exponential moving average of the gradient

and the squared gradient, and the parameters β1 and β2 control the decay rates of

these moving averages.

With the following requirements for Adam:

α : Stepsize

β1, β2 ∈ [0, 1), is the exponential decay rates for the moment estimates. f(θ) :The stochastic

objective function with parameters θ. With θ0 : Initial parameter vector, then, m0
−→
0 (Initialize

1st moment vector), v0←−0 (Initialize 2nd moment vector) and t←−0 (Initialize timestep),

gt←−5θ ft(θt−1) , we get the gradients w.r.t. at timestep t. Then we have exponentially

decaying average of past gradients mt, similar to momentum. As mt and vt are initialized

as vector of 0’s, they are biased towards zero. Especially when the decay rates are small

(i.e. β1 and β2 are close to 1).

mt = β1mt−1 + (1− β1)gt−→

the first moment (the mean).

vt = β2vt−1 + (1− β2)g2t−→

the second moment (the uncentered variance).

Adam: averages of gradient, or squared gradients. For bias correction we have the

following:

mt = (1− β1)f
′
(θt) + β1mt−1,

vt = (1− β2)f
′
(θt)

2 + β2vt−1

m̂t =
mt

(1− (1− β1)t)
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v̂t =
vt

(1− (1− β2)t)
.

Followed by the Adam update rule,

pt = α
m̂t√
v̂t
,

θt+1 = θt − pt.

By counteracting these biases in Adam we have the following, m̂t=
mt

1−βt
1

and v̂ = vt
1−βt

2
,

Adam θT+1 = θt − η√
v̂t+ε

m̂t. Using large models and data sets, we demonstrate Adam can

efficiently solve practical deep learning problems.

3.3.5 Epochs

In terms of artificial neural networks (AI), an epoch refers to one cycle through the full

training data set. Its a point of time to mark the important and noteworthy period in the

history. It also means the marking of time period that brought out lot of new developments

and change usually, training a neural network takes more than a few epochs. In other words,

feeding a neural network the training data for more than one epoch in different patterns, we

hope for a better generalization when given a new ”unseen” input (test data). The number

of epochs is a hyperparameter that defines the number times that the learning algorithm

will work through the entire training data set. One epoch means that each sample in the

training data set has had an opportunity to update the internal model parameters. It may

not make much sense in the starting that passing the entire data set through a neural

network once is not enough. And we do need to pass the full data set multiple times to the

same neural network to improve learning process. But lets keep in mind that we are using a

limited data set and to optimise the learning and the graph we are using Gradient Descent

which is an iterative process. So, updating the weights with single pass or one epoch is

not enough. For hyperparameters on log scale, we have for example, a typical sampling
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of the learning rate would look as follows : learning rate = 10 ∗ ∗uniform(−6, 1). That

is, we are generating a random number from a uniform distribution, but then raising it to

the power of 10. The number of epochs is traditionally large, often hundreds or thousands,

allowing the learning algorithm to run until the error from the model has been sufficiently

minimized. You may see examples of the number of epochs in the literature and in tutorials

set to 10, 100, 500, 1000, and larger.

3.4 Activation functions with Neural Networks

Lets quickly review what usage of an activation functions has along with neural networks,

for a brief definition of what an activation function is, Its just a thing function that you use

to get the output of node. It is also known as Transfer Function. This comes of importance

because it is used to determine the output of neural network, like yes or no. It maps the

resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the function).

Y =
∑

(weight ∗ input) + bias,

The value of Y can be anything ranging from −∞ to +∞. The neuron really doesn’t know

the bounds of the value.

3.4.1 Sigmoid or Logistic Activation Function

The Sigmoid Function curve looks like a S-shape.

The main reason why we use sigmoid function is because it exists between (0 to 1).

Therefore, it is especially used for models where we have to predict the probability as an

output. Since probability of anything exists only between the range of 0 and 1, sigmoid is

the right choice.
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Figure 3.8: Sigmoid Function

3.4.2 Tanh or Hyperbolic tangent Activation function

tanh is also like logistic sigmoid but studies have shown it to be better, the range of the

tanh function is from (-1 to 1). tanh is also sigmoidal (s - shaped). The advantage is

that the negative inputs will be mapped strongly negative and the zero inputs will be

mapped near zero in the tanh graph. The function is differentiable, and the function is

also monotonic while its derivative is not monotonic. The tanh function is mainly used

classification between two classes.

3.4.3 ReLu (Rectified Linear Unit) Activation Function

The ReLU is the most used activation function in the world right now. Since, it is used

in almost all the convolutional neural networks or deep learning methodologies, because a

model that uses it is easier to train and often achieves better performance. A node or unit

that implements this activation function is referred to as a rectified linear activation unit,

or ReLU for short. Often, networks that use the rectifier function for the hidden layers
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Figure 3.9: LReLU function

are referred to as rectified networks. The rectified linear activation function is a simple

calculation that returns the value provided as input directly, or the value 0.0 if the input

is 0.0 or less.

3.4.4 LReLU Activation function

Leaky ReLU is a modification of ReLU which replaces the zero part of the domain in

[−∞, 0] by a low slope, as shown in figure and formula below. The motivation for using

LReLU instead of ReLU is that constant zero gradients can also result in slow learning, as

when a saturated neuron uses a sigmoid activation function. Furthermore, some of them

may not even activate.

f(x) =

 0.01x for x < 0

x for x ≥ 0
f ′(x) =

 0.01 for x < 0

1 for x ≥ 0
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3.5 Supervised Learning

The majority of practical machine learning (ML) uses supervised learning. Supervised

learning is where you have input variables (X) and an output variable (y) and use an

algorithm to learn the mapping function from the input to the output.

Y = f(X).

The intention of supervised machine learning is to build a model that makes predictions

based on evidence in the presence of uncertainty. A supervised learning algorithm takes

a known set of input data and known responses to the data (output) and trains a model

to generate reasonable predictions for the response to new data, often we find the usage of

classification and regression techniques to develop predictive models. A concise explanation

of classification techniques to foresee discrete responses, for example; whether an email is

genuine or spam, or whether a tumor is cancerous or benign. Classification models classify

input data into categories. Typical applications include medical imaging, speech recogni-

tion, and credit scoring. [11] Logistic regression is the appropriate regression analysis to

conduct when the dependent variable is dichotomous (binary). Like all regression analyses,

the logistic regression is a predictive analysis. Logistic regression is used to describe data

and to explain the relationship between one dependent binary variable and one or more

nominal, ordinal, interval or ratio-level independent variables.

The goal is to approximate the real underlying mapping so well that when you have

new input data (X), you can predict the output variables (y) for the data. To have a quick

look of the process of supervised learning data set here is a contrived example. where each

row is an observation comprised of one input variable (X) and one output variable to be

predicted (y).

The process of an algorithm learning from the training data set can be thought of as

a teacher supervising the learning process. Recall that we know the correct answers, the
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Table 3.1: Sample data

1 X;time y;measure
2 1 100
3 2 110
4 3 108
5 4 115
6 5 120

algorithm iteratively makes predications on the training data and is corrected by making

updates. The learning stops when the algorithm achieves an acceptable level of perfor-

mance. Furthermore, supervised learning problems can be further grouped into regression

and classification problems.

1. Classification: A classification problem is when the output variable is category, such

as red and blue or disease and no disease to binary representation of 1 (yes) , 0 (no).

2. Regression: A regression problem is when the output variable is a real value, such

as dollars or weight. The contrived example above is a regression problem.

Now lets look at the sequence of numbers from pervious table, given a sequence of

numbers for a time series data set we can restructure the data to look like a supervised

learning problem. We may do this by using pervious time steps as input variables and

use the next time step as the output variable. As our pervious table shows that we can

restructure this time series data set as a supervised learning problem by using the value at

the previous time step to predict the value at the next time-step. Re-organizing the time

series data set as this manner, the data will look as follows:

Before moving on, some observation to be made on the transformation of the data set:

• We can see that the previous time step is input (X) and the next time step is the

output (y) in our supervised learning problem.

• The order between the observations is preserved, and must continue to be preserved

when using this data set to train a supervised model.
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Table 3.2: Sample data with missing values

1 X y
2 ? 100
3 100 110
4 110 108
5 108 115
6 115 120
7 120 ?

• Notice we have no pervious value that we can use to predict the first value in the

sequence, then we will delete this row as we cannot use it.

• Finally, observe that we do not have a known next value to predict for the last value

in the sequence. We may want to delete this value while training our supervised

model. Note that we still use pervious data we simply preserve for training propose.

The use of using prior time steps to forecast the next time step is called in some literature

sliding, and in statistics and time series analysis, this is called a lag or lag method. Which

was perviously stated used as a forecasting method. The number of pervious time steps

are called the lag value. This is the bias for how we can turn any time series data set into

a supervised learning problem. Furthermore, we must notice a few more things:

- This work can turn a time series into either a regression or classification supervised

learning problem for real-valued or labeled time series values.

- Once a time series data set is prepared in this manner, any of the standard linear and

nonlinear machine algorithms may be applied, as long as the order of the rows is preserved.

- The lag value can be increased to include more previous time steps. - The lag method

can be used on a time series that has more than one value, or so-called multivariate time

series.
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3.5.1 Unsupervised Learning

Unsupervised learning is concerned with finding patterns and structure in unlabeled data.

Examples of unsupervised learning include clustering, dimensionality reduction, and gen-

erative modeling. The unsupervised machine learning algorithms infer to patterns from

a dataset without reference to known, or labeled, outcomes. Unlike supervised machine

learning, unsupervised machine learning methods cannot be directly applied to a regression

or a classification problem because you have no idea what the values for the output data

might be, making it impossible for you to train the algorithm the way you normally would.

Unsupervised leaning can instead be used for discovering the underlying structure of the

data. There are some useful application of unsupervised machine learning algorithms which

learning purports to uncover previously unknown patterns to data, but most of the time

these patterns are poor approximations of what supervised machine learning can achieve.

Additionally, since you do not know what the outcomes should be, there is no way to

determine how accurate they are, making supervised machine learning more applicable to

real-world problems. Leading to having supervised learning is the optimal technique.

We now find ourselves with gathered information what in application to methodologies

applied to our stock market and educational datasets. Now we move forward on exploring

the structure of the methods used on our datasets via artificial neural networks.

3.6 Data Splitting

One of the main requirements in Machine learning is to build computational models with

a high ability to generalize well the extracted knowledge. The learning goal, the ability to

predict depends on the number of data points we have, the ’noise’ in the data, and our

knowledge about relevant features. The reason we must divide our data into a training and

test dataset is that the point of machine learning is to make accurate predictions about

new data we have not seen. We can guard against overfitting in two ways: we can use

less expressive models with fewer parameters, or we can collect more data so that the
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likelihood that the noise appears patterned decreases. Indeed, when we increase the size of

the training data set.

The simpler model has more bias but is less dependent on the particular realization

of the When training (e.g. artificial neural networks), poor generalization is often charac-

terized by over-training. A common method is to avoid over-training then one holds-out

cross-validation. In most of the applications, simple random sampling is used. Never-

theless, there are several sophisticated statistical sampling methods suitable for various

types of datasets. In the case of supervised learning, a computational model is trained

to predict outputs of an unknown target function. The target function is represented by

a finite training dataset T of examples of inputs and the corresponding desired outputs:

T = [ x1, d1], ..., [ xn, dn] , where n > 0 is the number of ordered pairs of input/output

samples (patterns). At the end of the training process, the final model should predict cor-

rect outputs for the input samples from T , but it should also be able to generalize well to

previously unseen data. Cross-validation techniques [Refaeilzadeh et al., 2009; Picard and

Cook, 1984] belong to conventional approaches used to ensure good generalization and to

avoid over-training. K-fold cross-validation maximizes the use of the data. The basic idea

is to divide the dataset T into two subsets one subset is used for training while the other

subset is left out and the performance of the final model is evaluated on it. K-fold divides

data randomly into k folds (subsets) of equal size, then we train the model k− 1 folds (i.e.

use one fold for testing). Repeat this process k times so that all folds are used for testing,

which then we compute the average performance on the k test sets. This effectively uses

all the data for both training and testing, typically k = 10 is used.

The problem of appropriate data splitting can be handled as a statistical sampling

problem. These sampling methods can be divided into the following categories based on

their principles, goals and algorithmic and computational complexity:

• Simple random sampling (SRS)

• Trial-and error methods
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• Stratified sampling

• Systematic sampling

... and others.

Some of the methods are simple and widely used, although they suffer from high variance

of the model performance. For classification problems, we we measure the performance of

a model in terms of its error rate: percentage of incorrectly classified instances in the

data set. Building a model, we want to use it to classify new data. Hence we are chiefly

interested in model performance on new (unseen) data. The re-substitution error (error

rate on the training set) is a bad predictor of performance on new data. The model was

build to account for the training data, so might overfit it, i.e., not generalize to unseen

data. Moveover, the more data available, more training which equals better model. The

more test data, the more accurate the error estimate.

3.7 Classification method

Machine learning is one of the major ways of classifying the myriad sciences, studies how to

automatically learn to make accurate predictions based on past observations. As we have

mention before raw data will likely be seldom complete. Knowing that Artificial Neural

Networks require complete set of data for an accurate classification, after imputation and

data completion we may move forward on classifying data.

Classification methods based on Neural Networks, take a single neuron (processing

element- PE) with inputs and outputs. Once more we have a set of training observation

(x1, y1), ...., (xn, yn) that we can use to build a classifier. With classifying examples into

given sets of categories.

Examples of Classification problems we have the following:

• fradu detection
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Figure 3.10: Classification.

• optical character recognition

• machine vision (e.g., face detection)

• market segmentation (e.g., predict if customer will respond to promotion)

• bioinformatics (e.g., classify proteins according to their function)

... along with others.

Classification is the most widely used Machine learning technique that involves sepa-

rating the data into different segments which are non-overlapping. Hence classification is

the process of finding a set of models that describe and distinguish class label of the data

object. Classification can be performed on structured or unstructured data. Classification

is a technique where we categorize data into a given number of classes. The main goal

of a classification problem is to identify the category/class to which a new data will fall

under. Building an accurate classifier is always what we are working towards, for good test

performance, we need 1) enough training examples, 2) good performance on training set

and 3) classifier that is not ”too complex” (Occams razor). With classifiers having to be ”as

simple as possible, but no simpler”. We have ”simplicity” closely related to prior expecta-
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tion. Before moving forward a few terminologies needed when dealing with classification

method.

• Classier: An algorithm that maps the input data to specific category.

• Classification model: A classification model tries to draw some conclusion from the

input values given for training. It will predict the class labels/categories for the new

data.

• Feature: A feature is an individual measurable property of a phenomenon being

observed.

• Binary Classification: Classification task with two possible outcomes. Eg: Gender

classification(Male/Female)

• Multiclass classification: Classification with more than two classes. In multi class

classification each sample is assigned to one and only one target label. eg: An animal

can be cat or dog but not both at the same time

• train the classifier: All classifiers in sciit-learn uses a fit (X, y) method to fit the

model(training) for the given train data X and train label y.

• Predict the target: Given an unlabeled observation X, the predict(X) returns the

predicted label y.

3.7.1 Linear Regression

Let us first start with the supervised learning via Linear Regression for classification

method. Start off with stating training data: {(x1, g1), (x2, g2), ..., (nN , gN)}, with the

feature vector X = (X1, X2, ..., Xp),where each variable Xj is quantitative. The response

variable G is categorical. G ∈ G = {1, 2, ..., K}, from a predictor G(x) to predict G based

on X. For a quick simple and most commonly used example we have email spam G has
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Figure 3.11: Linear Regression Classification problem.

only two values, say 1 denoting a useful email and 2 denoting a junk email. X is a 57-

dimensional vector, each element being the relative frequency of a word or a punctuation

mark. G(x) divides the input space (feature vector space) into a collection of regions, each

labeled by one class.

On the figure above the left plot shows some data from three classes, with linear de-

cision boundaries found by linear discriminant analysis. The right plot shows quadratic

decision boundaries. These boundaries were obtained by fining linear boundaries in the

five-dimensional space X1, X2, X12, X
2
1 , X

2
2 . Linear inequalities in this space are quadratic

inequalities in the original space. For linear methods we have two class problem, the de-

cision boundary between the two classes is a hyperplane in the feature vector space. A

hyperplane in the p dimensional input space is the set:{
x : α0 +

p∑
j=1

αjxj + 0

}
.
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Table 3.3: Logistic regression
notation range equivalents

standard probability p 0, 0.5, 1
odds p/q 0, 1, +∞

log odds (logit) log(p/q) (−∞, 0, +∞)

The two regions separated by a hyperplane:{
x : α0 +

p∑
j=1

αjxj > 0

}
,

and {
x : α0 +

p∑
j=1

αjxj < 0

}
.

3.7.2 Logistic Regression

As for the Logistic regression we have the type of regression model that is used for pre-

dicting the result of categorical (a variable that can have a limited number of categories)

dependent variable based on one or more predictor variables. Name is somewhat misleading

The Logistic regression model is used to determine the impact of multiple independent vari-

ables presented simultaneously to predict membership of one or other of the two dependent

variable categories. Name is somewhat misleading, but it is really a technique for classifi-

cation, not regression. The ”Regression” comes from the fact that we fit a linear model to

the feature space. Which involves a more probabilistic view of classification. Quickly lets

go over the different ways of expressing probability, lets consider a two-outcome probability

space, where:

p(O1) = p,

p(O2) = 1− p = q.

We can express probability of O1 as:
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Then we have the following functions from probability to log odds,

logit function:

z = log

(
p

1− p

)
,

logistic function:

p =
ez

1 + ez
=

1

1 + e−z
.

Using a logistic regression model we have a model which consists of a vector β in d-

dimensional feature space. For point x in feature space, we have β to convert it into a real

number z in the range −∞ to +∞ then,

z = α + β · x = α + β1x1 + ...+ βdxd.

We map z to the range 0 to 1 using the logistic function p = 1
(1+e−z)

. Training a logistic

regression model we take fourth the need to optimize β so the model gives the best possible

reproduction of training set labels. This is usually done by numerical approximation of

maximum likelihood, and on really large dataset, we may use the gradient descent. As we

can see the logistic regression can be considered a special case of linear regression models.

A logistic regression model specifies that an appropriate function of the fitted probability of

the event is a linear function of the observed values of the available explanatory variables.

The Logistic regression model has one major advantage of being able to produce a simple

probabilistic formula of classification, on the contrary a weakness is that it cannot properly

deal with problems of non-linear and interactive effects of explanatory variables.

For instance, a sophisticated machine learning program could classify flowers based on

photographs. Our aspiration is more modest, we’re going to classify an example of a Iris

flowers based on the length and width measurements of their sepals and petals. The Iris

genus entails about 300 species, but our program will only classify the following three:

• Iris Setosa
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• Iris Virginica

• Iris Versicolor

This data set, iris training.csv, is a plain text file that stores tabular data formatted as

comma-separated values (CSV). Use the head -n5 command to take a peak at the first five

entries:

120,4,setosa,versicolor,virginica

6.4,2.8,5.6,2.2,2

5.0,2.3,3.3,1.0,1

4.9,2.5,4.5,1.7,2

4.9,3.1,1.5,0.1,0

From this view of the data set, we notice the following:

1. The first line is a header containing information about the data set:

• There are 120 total examples. Each example has four features and one of three

possible label names.

2. Subsequent rows are data records, one example per-line, where:

• The first four fields are features: these are characteristics of an example. Here,

the fields hold float numbers representing flower measurements.

• The last column is the label: this is the value we want to predict. For this data

set we have an integer value of 0, 1, or 2 that corresponds to a flower name.

Each label is associated with string name (for example, ”setosa”), but machine learning

typically relies on numeric values (binary). Here we find ourselves with more than two

variables to classify. The label numbers are mapped to a named representation, such as:

• 0: Iris Setosa
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Figure 3.12: A neural network with features, hidden layers, and predictions.

• 1: Iris Versicolor

• 2: Iris Virginica

We need to select such algorithm that we may model and train. There are countless

of algorithms that machine learning has made various designs for recognizing patterns to

make intelligent decision for the input data. The major challenge for machine learning

technique is behavior of inputs which should be trained during observed examples. Hence

they are trained with all possible inputs to produce efficient and sensitive output. In this

case it is possible to use a neural network to solve the Iris classification problem. Neural

networks can find complex relationships between features and the label. It is a highly-

structured graph, organized into one or more hidden layers. Each hidden layer consists of

one or more neurons. There are several categories of neural networks and this program

uses a dense network, or fully-connected neural network: the neurons in one layer receive

input connections from every neuron in the previous layer. For example, Figure 3.2 3.7.2

illustrates a dense neural network consisting of an input layer, two hidden layers, and an

output layer [12]:

Python code based on Tensor-flow may be found in Appendix A.
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3.8 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) most popular neural network model being

used for image classification problem. The Convolutional Neural Network is a feed-forward

neural network and like the traditional architecture of a neural network including input

layers, hidden layers and output layers, convolutional neural network also contains these

features and the input of the layer of convolution are the output of the previous layer of

convolution or pooling. Of course, they still have some unique features such as pooling

layers, full connection layers, etc. The number of hidden layers in a CNN is more than

that in a traditional neural network, which to some extent, shows that the capability of

the neural network. The more the hidden layers are, the higher feature it can extract

and recognize from the input. With the activation function and conditioning is performed

by applying multiple convolutional filters in parallel to separate time series which allows

for the fast processing of data and the exploitation of the correlation structure between

the multivariate time series. The practical benefit is that having fewer parameters greatly

improves the time it takes to learn as well as reduces the amount of data required to train

the model. Instead of a fully connected network of weights from each pixel, a CNN has

just enough weights to look at a small patch of the image, which allows for deeper learning

process. Its like reading a book by using a magnifying glass; eventually, you read the whole

page, but you look at only a small patch of the page at any given time. Convolutional

neural networks were developed with the idea of local connectivity. Each node is connected

only to a local region in the input. The spatial extent of this connectivity is referred to as

the receptive field of the node. The local connectivity is achieved by replacing the weighted

sums from the neural network with convolutions. In each layer of the convolutional neural

network, the input is convolved with the weight matrix (also called the filter) to create a

feature map. In other words, the weight matrix slides over the input and computes the dot

product between the input and the weight matrix. Note that as opposed to regular neural

networks, all the values in the output feature map share the same weights. This means that
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all the nodes in the output detect exactly the same pattern. The local connectivity and

shared weights aspect of CNNs reduces the total number of learnable parameters resulting

in more efficient training. The intuition behind a convolutional neural network is thus to

learn in each layer a weight matrix that will be able to extract the necessary, translation-

invariant features from the input.

Figure 3.13: Typical CNN architecture.

CNNs are regularized versions of multilayer perceptrons, the multilayer perceptrons

usually refer to fully connected networks, that is, each neuron in one layer is connected

to all neurons in the next layer. The ”fully-connectedness” of these networks make them

prone to overfitting data. Typical ways of regularization includes adding some form of

magnitude measurement of weights to the loss function. However, CNNs take a different

approach towards regularization: they take advantage of the hierarchical pattern in data

and assemble more complex patterns using smaller and simpler patterns. Therefore, on

the scale of connectedness and complexity, CNNs are on the lower extreme. Convolutional

networks were inspired by biological processes in that the connectivity pattern between

neurons resembles the organization of the animal visual cortex. Individual cortical neurons

respond to stimuli only in a restricted region of the visual field known as the receptive field.

The receptive fields of different neurons partially overlap such that they cover the entire

visual field.

Lets consider a 256 × 256 image, CNN can efficiently scan it chunk by chunk, say
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a 5 × 5 window. The 5 × 5 window slides along the image (usually left to right, and

top to bottom), as shown below. Example, a stride length of 2 means the 5 × 5 sliding

window moves by 2 pixels at a time until it spans the entire image. A convolution is

a weighted sum of the pixel values of the image, as the window slides across the whole

image. Turns out, this convolution process throughout an image with a weight matrix

produces another image (of the same size, depending on the convention). Convolving is

the process of applying a convolution, as the sliding-window methodology happens in the

convolution layer of the neural network. A typical CNN has multiple convolution layers.

Each convolutional layer typically generates many alternate convolutions, so the weight

matrix is a tensor of 5 × 5 × n, where n is the number of convolutions. For example, say

we have an image which goes through a convolution layer on a weight matrix of 5× 5× 64.

It then generates 64- convolutions by sliding a 5 × 5 window. Therefore, this model has

5×5×64(= 1, 600) parameter, which is remarkably fewer parameters than a fully connected

network, 256× 256 = 65, 536.

Figure 3.14: CNN classifier.
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This leads us to the best part of the CNN, which is that the number of parameters is

independent of the size of the original image. You can run the same CNN on a 300× 300

image, and the number of parameters will not change in the convolution layer. The CNN

model will learn a function that maps a sequence of past observations as input to an output

observation. As such, the sequence of observations must be transformed into multiple

examples from which the model can learn. On a later chapter the application of the CNN

will be displayed on our data.

3.9 Recurrent Neural Network (RNN)

A Recurrent neural network (RNN) is a class of artificial neural network where connec-

tions between nodes form a directed graph along a temporal sequence, they are networks

with loops in them, allowing information to persist. This allows it to exhibit temporal

dynamic behavior. Unlike feedforward (memeoryless) neural networks, RNNs can use their

internal state (memory) to process sequences of inputs. This makes them applicable to

tasks such as unsegmented, connected handwriting recognition or speech recognition. The

main advantage of Recurrent Neural Networks is that RNN can model sequence of data

(i.e. time series) so that each sample can be assumed to be dependent on previous ones.

The next value in the series is dependent on the previous value in the series. As the Re-

current Neural Network remembers the past and its decisions are influenced by what it has

learned from the past. RNNs learn similarly while training, in addition, they remember

things learnt from prior input(s) while generating output(s), its part of the network. The

RNNs can take one or more input vectors and produce one or more output vectors and the

output(s) are influenced not just by weights applied on inputs like a regular NN, but also

by a hidden (layer) state vector representing the context based on prior input(s)/output(s).

So, the same input could produce a different output depending on previous inputs in the

series. As shown on the figure below, a Recurrent Neural Network, with a hidden state

that is meant to carry pertinent information from one input item in the series to others.
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Figure 3.15: Figure 3.7: Simple Recurrent Neural Network

This chain-like nature reveals that recurrent neural networks are intimately related to

sequences and lists. They’re the natural architecture of neural network to use for such

data. In the last few years, there have been incredible success applying RNNs to a variety

of problems: speech recognition, language modeling, translation, image captioning. The

list goes on. For simplicity lets start of with Elman and Jordan networks known as ”simple

recurrent networks” (SRN). That can be represented by diagram above.

Elman network:

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by).

Jordan network:

ht = σh(Whxt + Uhyt−1 + bh)

yt = σy(Wyht + by).

RNNs are very powerful, because they combine two properties: - Distributed hidden

state that allows them to store a lot of information about the past efficiently. - Non-linear
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dynamics that allows them to update their hidden state in complicated ways. The core

reason that recurrent nets are more exciting is that they allow us to operate over sequences

of vectors: Sequences in the input, the output, or in the most general case both. The type

of artificial neural network that the RNNs comes along with adds additional weights to the

network to create cycles in the network graph in an effort to maintain an internal state.

The promise of adding state to neural networks is that they will be able to explicitly learn

and exploit context in sequence prediction problems, such as problems with an order or

temporal component.

Figure 3.16: Recurrent neural network

Recurrent neural networks are deterministic. So think of the hidden state of an RNN

as the equivalent of the deterministic probability distribution over hidden states in a linear
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dynamical system or hidden Markov model. Recall that the Hidden Markov Models have

a discrete one of-N hidden state. RNNs could potentially learn to implement lots of small

programs that each capture a nugget of knowledge and run in parallel, interacting to

produce very complicated effects. Furthermore, with a RNN we can process a sequence of

vectors x by applying a recurrence formula at every time step denoted by: ht = fW (ht−1, xt),

with ht = new state, fW = some function with parameters W , ht−1= old state, and xt=

input vector at some time step.

Figure 3.17: State consists of a single ”hidden vector” h

Then we have the following RNN format:

ht = fW (ht−1, xt)
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↓

ht = tanh(Whhht−1 +Wxhxt),

yt = Whyht.
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Chapter 4

Forecasting of Data sets

4.1 Classification of Credit Card Default

For a brief introduction to our data set, regarding the default of credit card problem, this

case of information of customers default payments come from Taiwan. We will us default

binary result of classification - credible or not credible clients. Our indicates that payment

date was on October of 2005; Taiwan bank collected a cash and credit card issuer. There is

a total of 25,000 observations, 5529 observations (22.12%) are the card holders with default

payment. The data set will be set employed as a binary variable, default payment (Yes =

1, No=0), as the response variable. Within our data set we have used the following of 23

variables as explanatory variables denoted as:

• X1: Amount of the given credit (NT dollar): it includes both the individual consumer

credit and his/her family (supplementary) credit.

• X2: Gender (1 = male; 2 = female).

• Education (1 = graduate school; 2 = university; 3= high school; 4 = others).

• X4: Marital status (1 = married; 2 = single; 3 = others).

• X5: Age (year).

• X6-X11: History of past payment. We tracked the past monthly payment records

(from April to September, 2005) as follows: X6 = the repayment status in Septem-

ber, 2005; X7 = the repayment status in August, 2005 ; . . .; X11 = the repayment
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status in April, 2005. The measurement scale for the repayment status is: -1 = pay

duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8

= payment delay for eight months; 9 = payment delay for nine months and above.

• X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement

in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 =

amount of bill statement in April, 2005.

• X18-X23: Amount of previous payment (NT dollar). X18 = amount paid in Septem-

ber, 2005; X19 = amount paid in August, 2005; . . .; X23 = amount paid in April,

2005.

The delinquency crisis of credit card debt increased in recent years in Taiwan. As

observed on variables from data were collected year of 2005, based on Taiwan recent studies

they were expecting a peak in the third quarter of year 2006 ( crisis on credit card debt) [13].

In order for Taiwan to increase their market share, the card-issuing banks of Taiwan over

issued credit cards to unqualified candidates. Another factor that would have to be dealt

with is the fact that most card holders, irrespective of their repayment ability and lead to

an overused credit card, this accumulates to a heavy credit card and cash debts. This crisis

(crash) leads to major importance to business and banks, on having the ability predict

customers’ credit risk, and reduce the damage and uncertainty. Such methods are describe

to be statistical methods, which are used to classifying applicants for credit into ”good” and

”bad” classes. Throughout the growth of Artificial Intelligence and machine learning these

types of models/methods have become increasingly important with the dramatic growth in

consumer credit in the past years.

Moveover, for the default data, we use the logistic model by defaulting on the credit

card debt. For example, the probability of default given balance may be written as:

Pr(default = Y es|balance),
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we will denote for not the above probability by p(balance) for convenience. Moving on,

we now see how the modeling in relationship between X and Y with gathered information

from pervious chapters. As for the binary classification problem,

p(X) = Pr(Y = 1|X)

for X, recall perviously stated that the linear regression model

p(X) = β0 + β1X,

where the goal is to use the default = Yes to predict balance.

For a quick intuition on the modeling perspective, we copy p(X) using a function that gives

outputs between 0 and 1 for all values of X, where

p(X) = β0 + β1X.

We use the logistic function,

p(X) =
eβ0+β1X

1 + eβ0+β1X .
(4.1)

To fit a model in equation (4.1) we use least square method, after some manipulation of

equation (4.1),
p(X)

1− p(X)
= eβ0+β1X (4.2)

Taking the log of equation (4.2) gives us,

log

(
p(X)

1− p(X)

)
= β0 + β1X,

where the left hand side is called the log-odds or logit. With further production estimating

the coefficients we note that:

• β0 and β1 in equation (4.1) are unknown and must be estimated using the training
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Figure 4.1: Sample data set.

data.

• Using the method of least squares to fit the coefficients as shown previously [11].

On the figure 4.1 a figure on the credit card clients, for data visuals.

Data was randomly divided into two groups, one; for model training and the other; to

validate the model. The training data is based on error rates, in our research we will show

how the artificial neural network (ANN) is the best models in the classification methods,

along with other CNN and RNN. We have the following Mathematica code, Mathematica

as other softwares, has been growing in machine learning \ AI community. It is able to

read the data from the csv file.

Appropriate code in Mathematica is given below.

DataMatrix = Import["defaultofcreditcardclients.csv"];

NumberOfRows = Dimensions[DataMatrix][[1]];

TrainingSet = Table[DataMatrix[[i, 1 ;; 23 ]] -> DataMatrix[[i, 24 ]],

{i, 1, NumberOfRows}];
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Figure 4.2: Logistic Regression chart [13].

Prediction = Classify[TrainingSet, Method -> "NeuralNetwork"]

Prediction[{20000, 2, 2, 1, 24, 2, 2, -1, -1, -2, -2, 3913, 3102, 689, 0, 0, 0,

0, 689, 0, 0, 0, 0}]

Prediction[{50000, 1, 2, 1, 57, -1, 0, -1, 0, 0, 0, 8617, 5670, 35835, 20940,

19146, 19131, 2000, 36681, 10000, 9000, 689, 679}]

The command was given by: DataMatrix = Import[”defaultofcreditcardclients.csv” .

After reading csv file and stored appropriate information into matrix. Next we move onto

our TrainingSet= Table[DataMatrix[[i,1;;23]]-> DataMatrix[[i,24]],{i,1,NumberOfRows} ,

the training-set contains a data in the format readable by the function classify.

Prediction = Classify[TrainingSet] , For the output of the function classify, can be

used for predictions.

On the figure above we see a chart of the logistic regression, with its classification

accuracy we have the following information for the Error rate on the training data we have

0.20% of accuracy and 0.18% on validation of data. Then we have,
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Figure 4.3: Scatter plot diagram of artificial neural networks [13].

Predition[{20000,2,2,1,24,2,2,-1,-1,-2,-1,3913,3102,689,0,0,0,0,689,0,0,0,0}]

providing output :1 (correct). To continue with different training-set we get,

Predition[{50000,1,2,1,57,-1,0,-1,-1,0,0,0,8617,5670,35835,20940,19146,19131,

2000,36681,10000,9000,689,679}]

with output :0 (correct).

To move forward with the application of Artificial neural network (ANN) we have the

following scatter plot to represent our data prediction.

Artificial neural networks perform classification more accurately than the others [13]. In

the predictive accuracy of probability of default, artificial neural networks have shown the

best performance based on R2 (0.9647, close to 1), regression intercept (0.0145, close to 0),

and regression coefficient (0.9971, close to 1). The predictive default probability produced

by ANN is the only one that could be used to represent real probability of default.

As the perspective from risk control, when it comes to estimating the default is more
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Table 4.1: Classification accuracy [13]
method (ErrorRate

Training
) Validation

K-nearest neighbor 0.18 0.45
Logistic regression 0.20 0.44
Neural networks 0.19 0.54

Näive Bayes 0.21 0.21

Figure 4.4: Learning curve for neural network (NetworkDepth=8, MaxTrain-
ingRounds=10, Accuracy=0.818± 0.007, Loss=0.459± 0.011).
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Figure 4.5: Learning curve for logistic regression (L2Regularization=0.1, Optimiza-
tionMethod=LBFGS, Accuracy=0.807± 0.007, Loss=0.48± 0.011)

Figure 4.6: Learning curve for random forest (FeatureFraction= 1√
26

, LeafSize=5,
TreeNumber=50, DistributionSmoothing=0.5, Accuracy=0.817 ±
0.007, Loss=0.49± 0.0064
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Figure 4.7: Learning curve for Naive Bayes (SmoothingParameter=0.2,
Accuracy=0.776± 0.0012, Loss=0.830± 0.050)

Figure 4.8: Learning curve for K-Nearest Neighbors (NeighborsNumber=100, Dis-
tributionSmoothing=0.5, NearestMethod=Scan, Accuracy=0.782 ±
0.021, Loss=0.497± 0.027)
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Figure 4.9: Learning curve for Support Vector Machine (Kernel-
Type=RadialBasisFunction, GammaScalingParameter=0.0182614,
SoftMarginParameter=0.1, PolynomialDegree=3, BiasParame-
ter=1, MulticlassStrategy=OneVersusOne, Accuracy=0.795 ± 0.003,
Loss=0.527± 0.016)

Figure 4.10: Learning curve for Decision Tree (DistributionSmoothing=1, Feature-
Fraction=1, Accuracy=0.747± 0.008, Loss=0.66± 0.020)
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Figure 4.11: Learning curve for Markov model (Order=1, MinimumTokenCount=0,
Accuracy=0.761± 0.0011, Loss=0.568± 0.0‘5)

Figure 4.12: Learning curve for Gradient boosted trees (BoostingMethod=Gradient,
MaxTrainingRounds=50, LeavesNumber=500, LearningRate=0.1,
MaxDepth=6, LeafSize=35, L1Regularization=0, L2Regularization=0,
Accuracy=0.82± 0.007, Loss=0.447± 0.0011)

73



meaningful than classifying clients into binary results to - risky and non-risky. Therefore,

artificial neural networks should be employed to score clients instead of other data mining

techniques, such as logistic regression.

74



4.2 Crashes in Stock Market

The collapse of the Thai baht in July 1997 was followed by an unprecedented financial crisis

in East Asia around 1997-1999, from which some of these economies are still struggling to

recover. From this time frame we will showcase the forecasting of the crashes for 9 of those

countries that suffered from the devaluation in Thailand, from the foreign exchange market

pressure, along with the downfall of Thai baht. Not only did the collapse of Thai baht affect

other Asian countries, it also had an impact on Latin America, Caribbean countries, and

United States. The countries that will be showcased in our application are the following:

• Thailand 97’-01’

• Brasil 93’-01’

• Mexico 91’-01’

• Argentina 96’-01’

• Hong Kong 97’-01

• Philippines 97’-01’

• Turky 97’-01’

• USA 97’-01’

Of forecasting with the methods of neural networks, those which we have spoken about

on earlier chapters, ANN, RNN, and CNN.

The S&P 500 index as mention back on chapter 1, is an index of the market-capitalization-

weighted index of the 500 largest U.S. publicly traded companies, measured by market

capitalization. According to the details available on TSX website1, the constituent stocks

currently represent three industrial groups: Industrial, Mining, and Oil&Gas. This index
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is the basis for the most highly traded futures contract in United States. Market cap-

italization (market cap or capitalized value) is a measurement of corporate or economic

size equal to the share price times the number of shares outstanding of a public company.

A float-adjusted index is an index that weighs the component securities by the relative

capitalization of only those shares that are available to the public for trading, rather than

the total shares outstanding. A majority of Standard & Poors equity indices are market

capitalization weighted and float-adjusted, so each stocks weight in the index is propor-

tional to its float-adjusted market value. The second group of indices are equal weighted,

where each stock is weighted equally in the index. A third, and newer, group of indices

are weighted by other factors, such as the attributes used to choose stocks. The simplest

capitalization weighted index can be thought of as a portfolio consisting of all available

shares of the stocks in the index. As one might track this portfolios value worth in dollar

terms, it would be an unwieldy value. For example, the S&P 500 market value is roughly

11 trillion. The scaling is done by dividing the portfolio market value by a factor, usually

called the index divisor.

Index V alue =

∑
i PiQi

Index Divisor
,

where Pi is the stock of index i and Qi is the number of the shares of the stock i, used in

the index calculations. Using data from individual stocks to forecast the future value of the

overall index, in the short term (i.e., within the span of a few days). In order to be able to

measure the performance/quality of the models and methods on a data set different than

the exact set used for training purposes, each set of possible two-day end-of-day closing

value differences for the component stocks constituting the index is broken into two sets,

one used for training purposes, and one used for testing purposes as mentioned before in our

data preprocessing step. It is worth mentioning that in statistical learning applications,

during a validation process, there is a random decomposition of data into testing and

training. However, as this work is focusing on time-series financial data, in order to be

able to perform predictions of future movement in the series, we have chosen to select a
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certain number of beginning observations as our training set and the remainder of the data

set as our testing data. By applying machine learning methodologies to these data sets,

knowing when most high and low frequency occurred, to forecast this information is many

in the stock market industries to novice. More and More people are devoted to the study

of the prediction and as Artificial Intelligence, Deep learning continues to grow the ability

to forecast is becoming easier and easier for us to make stock prediction by using different

neural networks. In the following two sections we will showcase two neural networks on

forecasting the stock price movement. We set the opening price, high price, low price,

closing price and volume of stock deriving from the internet as input of the architecture

and then run and test the program.

4.3 Forecasting via Convolutional Neural Networks

We start off with forecasting with convolutional neural network that we had introduced

back in chapter 3. Traditionally, the input of a convolutional neural network is often a 2D

image, but that does not mean that we cannot use the model to help us make predictions.

There are two ways to preprocess the data, one we can convert the 1D-input data into

a 2D matrix and the other way is to take advantage of 1D function to help us do the

computation of convolution. We chose the latter to help us run and test the experiment.

Then, due to the stock data belonging to 1D time series data, a 1D function is applied

to do the convolution and set five features including volume, high price, low price, closing

price and volume as input [14]. The convolutional neural network (CNN) may be defined

the following way by using (software) TensorFlow.

model = Sequential()

model.add(Conv1D(filters=64, kernel_size=2, \\

activation=’relu’, input_shape=(n_steps, n_features)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())
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model.add(Dense(50, activation=’relu’))

model.add(Dense(1))

model.compile(optimizer=’adam’, loss=’mse’)

Our task it to do the binary classification instead of regression, so the output of our

model only consists of two values–one or zero, to show whether the stock price movement

will be up or down. When people are considering on buying a stock they will do when the

result of forecasting is a 1 and look to sell once price is posted. On the contrary, if forecast

is 0, one my decided to sell, or do other financial moves to not lose any equity. To minimize

our computing time, we have vectorized the input data, meaning that we will be training

our model at one time. The input form may be defined by the following matrix,

X = (x(1), x(2), ..., x(n))

n indicates the number of sample inputs.

The output form similarly,

Y = (y(1), y(2), ..., yn)

as y as our output value it will make it a Boolean value: 1 and 0. Adopting the min-max

normalization to keep value at range of 0 to 1.

x∗ =
x−min

max−min
,

Max indicates the maximum value of the features and min indicates the minimum of the

features.

Some sample prediction by using convolutional neural network is shown in the Fig. ??.

As perviously stated information on accuracy (chapter 2-3), it is possible to apply by

several different metrics to find our accuracy percentage. In this thesis the Mean Square

Error will be applied (MSE). Appropriate code in TensorFlow is given below.
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Figure 4.13: Sample prediction of crash for SP 500 (high) by using convolutional
neural network.

Figure 4.14: Forecast Crash for SP 500 (close) by using convolutional neural network.
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We will use ”teaching” number to train the model, with firstly vector of stock data

will be input into the stock prediction model and we will use the conv1d function to do

the computation of convolution. It is necessary to re-introduce the activation function.

Traditionally, the activation function most frequently used can be concluded as followings:

Tanh, Relu, Sigmoid and Lrelu, as mention on earlier chapter. To solve the problem

of gradient vanishing, we choose the Relu and Lrelu function to do the computation of

activation. The ReLU function and LReLU function can be defined as followings:

Relu (x) =

0 (x ≤ 0)

x (x > 0)

and

LRelu (xi) =

ai, xi (x ≤ 0)

xi (x > 0)

.

Where x and xi both are results of the computation of convolution in the convolutional

layer ai is a hyper-parameter with a very small value and usually we choose 0.01 as its

initial value ( i.e. it can also be fine-tuned to get the best result while training).

The final value the has been forecast will then be compared, and we will compute its

average error. Goal in hand during the training period is to minimize its error in order to

improve its accuracy. Here is were we apply optimization method with loss function, first

computing the result of the softMax function used in the fully connected layer, denoted as

follows:

yi =
eai∑C
k=1 e

ak
, i = 2.

With i indicating the number of classifications done, and a is the output of the connected

layer, finally C is the number of a an e of natural logarithm. With Error function computed

as the following:

J(W ) = −
n∑
k=1

C∑
i=1

tkilog(yki),
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Figure 4.15: Forecast Crash for SPC USA(close) by using convolutional neural network.

n is the number of the samples, and C is the number of the output of the fully connected

layer, tki is the probability that samples k belongs to class i, yki then indicates the probabil-

ity that models predict sample k which belongs to class I and W for the weight coefficient

of filters. Now in order for us to minimize the loss, we use what we have introduction in

our optimization methods sections, backpropagation algorithm, based on gradient descent

( check earlier chapter for review on topics). Taking ADAM algorithm proposed in to

do the computation of the optimization and we use the following equation to update the

parameter W.

W
′
= W − η · ∂J(W )

∂W

Where W
′

is the value which will be updated after each gradient descent iteration, and η

is the learning rate set to 0.0001 in experiment.
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Figure 4.16: Forecasting Crash for XU100 Turkey (close) by using convolutional
neural network.

Figure 4.17: Forecasting Crash for Nasdaq USA (close) by using convolutional neural
network.
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Figure 4.18: Forecasting Crash for PSI Philipines (close) by using convolutional neu-
ral network.

Figure 4.19: Forecasting Crash for SETI Thailand (close) by using convolutional
neural network.
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Figure 4.20: Forecast Crash for HSI HongKong (close) by using convolutional neural
network.

Figure 4.21: Forecast Crash for IGPA Chile (close) by using convolutional neural
network.
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Figure 4.22: Forecast Crash for MERV Arg (high) by using convolutional neural network.

Figure 4.23: Forecast Crash for SPC 77 (low) by using convolutional neural network.
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Figure 4.24: Forecast Crash for BVSP Bras (close) by using convolutional neural
network.

Figure 4.25: Forecast Crash for MXX Mexico (close) by using convolutional neural
network.
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4.4 Forecasting via Recurrent Neural Networks

In the choice of model we have well known Feed-forward neural network, which allows

signals to travel one way only: from input to output and there are no feedback (loops),

the output of any layer does not affect that same layer. In Recurrent neural network, it

allow signals to traveling in both directions by introducing loops in the network. There

is a feedback (loops) and feedback networks are powerful, dynamic and can get extremely

complicated. Their state is changing continuously until they reach an equilibrium point.

In stock price prediction we need a dynamic feedback network where we can follow the

unpredictable trend of the stock price dynamically. That is why we chose recurrent neural

network (RNN) for us to evolve it on our forecasting method. A recurrent network is a

class of advanced artificial neural network (ANN) that involves directed cycles in memory.

In a recurrent neural network; its connections between nodes form a directed graph along a

sequence, which allows exhibiting dynamic temporal behavior for a time sequence. Suppose

one wants to predict the next word in a sentence or to forecast the next day stock price

etc. by using machine learning methodologies [15]. The simplest form has an input layer

which receives the input, a hidden layer where the activation function is applied and an

output layer where one finally receives the output, covered in chapter 3.

In TensorFlow Recurrent neural network can be defined in the following way:

# Initialising the RNN

regressor = Sequential()

# Adding the first LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True, \\

input_shape = (X_train.shape[1], 1)))

regressor.add(Dropout(0.2))

# Adding a second LSTM layer and some Dropout regularisation
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regressor.add(LSTM(units = 50, return_sequences = True))

regressor.add(Dropout(0.2))

# Adding a third LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True))

regressor.add(Dropout(0.2))

# Adding a fourth LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50))

regressor.add(Dropout(0.2))

# Adding the output layer

regressor.add(Dense(units = 1))

Figure 4.26: Validation of the model for SP 500 by using Recurrent Neural Network
(RNN) for 100 epochs.
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Figure 4.27: Validation of the model for SP 500 by using Recurrent Neural Network
(RNN) for 400 epochs.

4.4.1 SP 500 methods with multiple input files via RNN

As research has progressed it was observed that it is possible to consider multiple input data

files. In presented example we have, 4 different input files were used: SP500 50-05-Close.csv,

SP500 50-05-High.csv, SP500 50-05-Open.csv, SP500 50-05-Low.csv, normally we run each

separately and by considering running these multiple inputs we save computational time

and work load is increased. For a quick sample results for the different number of epochs is

given below. In theory, it is possible to use arbitrary number of input files which increase

accuracy of the perditions, and allows us to take into account a lot of dependency in the

input data, which are not available for the calculations with single data file. An argument

can be made that it is possible to create one mathematical model for all stocks that are

available on the market. It is also possible to include additional information: Natural

disasters, international and national political situation, foreign exchange etc. With any

extra information it may increase accuracy of predictions, and help mold a comprehensive

mathematical model of financial market. A precise model of financial market can be applied

to simulate different economical strategy and find optimal solution for given situation on
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the market.

Figure 4.28: Validation of the model for SP 500 (close) by using Recurrent Neural
Network (RNN) for 400 epochs.

Figure 4.29: Validation of the model for SP 500 (high) by using Recurrent neural
network (RNN) for 400 epochs.
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Figure 4.30: Validation of the model for SP 500 (open) by using Recurrent neural
network (RNN) for 400 epochs.
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Chapter 5

Educational Data

5.1 Los Alamos National Laboratory

Artificial Intelligence is one of the scientific areas with greater diffusion and application

in the last years and continues to show tremendous growth. As missing data being of a

common problem in statistical analysis and with an everyday growth it is more common

to find tools for industrial, commercial or academic that use intelligent techniques in the

resolution of critical and recurrent problems. At this moment is where the collaboration

occurred with Claire McKay Bowen, Ph.D. (Postdoctoral Research Associate) Statistical

Sciences Group (CCS-6), and fellow Joanne R. Wendelberger, Ph.D Lead of the Statistical

Sciences Group, (CCS-6) from Los Alamos National Laboratory (LANL), and myself. My

research topic started with the time series and its forecasting on a financial data set, to fore-

casting crashes and credit card default in multivariate time series via the usage of machine

learning methodologies. From here, Claire and Joanne came up with a tentative outline for

my summer project. The title of my LANL project, Tile: Analyzing the Effects of Missing

Data in Time Series with Machine Learning Algorithms, with Problem: Educational and

career data sets tend to contain missing data, which is exacerbated the longer the data

collection/tracking is (e.g. K-12 to college to graduation). The computational statistical

group (CCS-6) from LANL, provided all the resources that I needed for my project to reach

full success. Chapter 5 will be dedicated to showcasing the summer project done for Los

Alamos National Lab. With great appreciation to Los Alamos and especially to Claire and

Joanne for their support and amazing inspiration for future work.
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Figure 5.1: Table of imputation methods

5.2 Introduction to missing data

As missing data is common problem in real-world settings which has lead to significant

attention in the statistical literature. There are flexible frameworks based on formal opti-

mization to impute missing values. Research has shown that these frameworks can readily

incorporate various predictive models such as K-nearest neighbors, Support Vector Ma-

chines, and Decision tree based methods, and can be adapted for multiple imputation.

With missing data phenomena is arguably the most common issue encountered by machine

learning practitioners when analyzing real-world data (raw data). As we know that for

many statistical models and machine learning algorithms rely on complete data sets, it be-

comes extremely important to handle the missing values appropriately. Below you will find

a table of imputation methods for deeper perception on methodologies and their references.

There are some machine learning studies done, that have shown some algorithms natu-

rally account for missing data and there is no need for preprocessing. In particular, CART

and K-means have been adapted for problems with missing data. But as for many other sit-

uations, missing values need to be imputed prior to any statistical analyses on the complete
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data set. Going forward lets assume that we are given data,

X = {x1, ..., xn}

with missing entries xid, (i, d) ∈ M. The objective is to impute the values of the missing

data that mirror the underlying complete data as closely as possible. From this point, one

may apply pattern recognition using machine learning methods on the imputed data and

results should be complementary to the complete data given.

5.3 Data description

On this study data we started with a subset data description,which lead us with an initial

simulation of data before moving forward. Our multivariate data had some dependent

variables and Independent variables, with the total of 14 variables, some discrete others

continuous. Below figure for visual of data description. So before moving forward with our

imputation, we needed a simulated dataset. In order to s simulated a dataset, the sample

data used for prediction is given by csv file of 1000 random generated students. For a more

complex data we have simulated a data-set of 1000 students with name for columns for

input given by :

• Gender: female=1; male=0.

• Race: white=1; African-American (black)=2; Asian =3; American Indian or Alaskan

Native =4, Native Hawaiian or other Pacific Islander , ethnicity: non-hispanic white

=1; hispanic or latino =2 ; non-hispanic Black =3; Chinese=4; European=5 ; Arab

=6 ; Indigenous=7; Filipino = 8.

• Immigrant: Yes=1, No=0

• High school-age=numeric from 14-15
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• Rank

• Dual-credit, Ap credit

• Combined SAT and ACT scores

• Parents highest education received

• Family gross income

The variable that will be used for forecasting will be the output of degree completion.

In order to test effectiveness of the methods presented in the Educational data I gener-

ated test data with different properties. It is also possible to predict missing data by using

different mathematical techniques along with statistical tools. I effectively used existing

statistical software for missing data (MICE, missForest, MI, ). The results for methods

well executed in this chapter. As research shows that in order to predict missing data it is

possible to apply machine learning techniques (neural networks), this application of simu-

lation and prediction will also be showcased below. Through the usage of neural networks a

module was developed to simulate the process described above. We simulated independent

paths of our model using different time steps for the data sets.

5.4 Imputation methods

As for the imputation packages found in R, we have the following used on our Educational

missing data-set, MICE (Multivariate Imputation via chained equations) is one of the

commonly used packages in R. Creating multiple imputations as compared to a single im-

putation (such as the mean) it takes care of uncertainly in missing values. MICE assumes

that the missing data are Missing at Random (MAR), which means that the probability

that a value is missing depends only on observed value and can be predicted using them.

It imputes data on a variable by variable basis by specifying an imputation model per
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Figure 5.2: Data description
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variable.

Amelia, for a quick history on why this name, Amelia Earhart, was the first female aviator

to fly solo across the Atlantic Ocean. History says, she got mysteriously disappeared (miss-

ing) while flying over the Pacific ocean, hence the name to solve missing value problems.

This package also performs multiple imputation which generates imputed data sets. It is

enabled with bootstrap based EMB algorithm which makes it faster and robust to impute

many variables including cross sectional, time series data. Amelia makes the following

assumptions, 1.) All variables in a data set have multivariate normal distribution, it uses

mean and covariances to summarize data. 2.) Missing data is random in nature (MAR). It

takes m bootstrap samples and applies EMB algorithm to each sample. The m estimates of

mean and variances will be different. Finally, the first set of estimates are used to impute

first set of missing values using regression, then second set of estimates are used for second

set and so on.

missForest was the third method applied to our Educational data and was the method

that was found most success in. As the name suggests, missForest is an implementation of

random forest algorithm. It is a non-parametric imputation method applicable to various

variable types. Non-parametric method does not make explicit assumptions about func-

tional form of f (any arbitrary function). Instead, it tries to estimate f such that it can

be as close to the data points without seeming impractical. missForest works by building

a random forest model for each variable, then it uses the model to predict missing values

in the variable with the help of observed values.

Another package found in R, was mi (multiple imputation with diagnostics) this package

provides several features for dealing with missing values. Like other packages, it also

builds multiple imputation models to approximate missing values and uses predictive mean

matching method. Predictive mean matching (pmm) for numeric variables. For each

observation in a variable with missing value, we observe (from available values) with the

closest predictive mean to that variable. From there the observed value from this match is

then used as the imputed value, mi uses Bayesian version of regression models to handle
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issue of separation. The imputation model specification is similar to regression output in R,

it also automatically detects irregularities in data such as high collinearity among variables,

and also it adds noise to imputation process to solve the problem of additive constraints.

Finally, we have PCA (principal component analysis); this imputation of incom-

plete continuous or categorical datasets, handles missing values in exploratory multivariate

analysis, an estimate the number of dimensions for the factorial analysis of mixed data by

cross-validation. The family of methods adapts the PCA algorithm to consider explicitly

the missing values. These procedures return scores for both variables and individuals using

an incomplete data set. Ipca : The iterative PCA method (Kiers 1997 ) also known as

the EM-PCA algorithm. Providing the scores and loadings minimizing the least squares

criterion on the observed entries, W ◦ (X − X̂)2, with wik = 0 if xik is missing and 1

otherwise and ◦ denotes the elementwise product. The minimization is achieved through

an iterative procedure: missing values are replaced by random values, and then PCA is

applied on the completed data set, and the missing values are then updated by the fitted

values (X̂s = UΛV T ) using a predefined number of dimensions S. This procedure is re-

peated until reached convergence. The method is implemented in the function imputePCA

of the R package missMDA.
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5.5 MICE

The R package mice imputes incomplete multivariate data by chained equations. The

software mice 1.0 appeared in the year 2000 as an S-PLUS library, and in 2001 as an

R package. mice 1.0 introduced predictor selection, passive imputation and automatic

pooling. This article documents mice 2.9, which extends the functionality of mice 1.0 in

several ways. The usage of mice 2.9, the analysis of imputed data is made completely

general, whereas the range of models under which pooling works is substantially extended.

mice 2.9 adds new functionality for imputing multilevel data, automatic predictor selection,

data handling, post-processing imputed values, specialized pooling routines, model selection

tools, and diagnostic graphs. Imputation of categorical data is improved in order to bypass

problems caused by perfect prediction. Special attention is paid to transformations, sum

scores, indices and interactions using passive imputation, and to the proper setup of the

predictor matrix [16].

Sample R code.

library(missForest)

library(mice)

library(randomForest)

MissingData<-read.csv(file=’data-education-50-r-5-mis.csv’)

imputed_Data <- mice(MissingData,m=10, maxit = 50, method = ’pmm’, seed =

600)

print(imputed_Data)

completeData <- complete(imputed_Data,action = 1)

write.csv(completeData,’data-education-50-r-5-mis-imputation.csv’)
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Table 5.1: Data for MICE

gender race ethnicity immigrant highschool age
1 7 8 2 14.5
0 2 2 0 14
0 1 1 0 14
1 6 6 2 13.8
0 1 1 0 14
0 1 1 0 14
1 5 6 2 13.8
0 2 2 0 14
1 5 6 2 13.8
0 3 3 1 14
0 2 2 0 14
1 6 6 2 13.8
0 4 4 1 14
1 6 7 2 15
1 5 6 1 13.8
0 4 4 1 14
0 3 3 0 14
1 5 5 1 14
0 2 3 0 14
0 2 3 0 14
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Table 5.2: Missing data for MICE

gender race ethnicity immigrant highschool age
1 1 7 8 2 14.5
2 0 2 2 0 14
3 NA 1 1 0 14
4 1 6 6 2 13.8
5 0 1 1 NA 14
6 NA 1 1 0 14
7 1 5 6 2 13.8
8 NA 2 2 0 14
9 1 5 6 2 13.8
10 0 3 3 NA 14
11 0 NA NA 0 14
12 1 6 6 2 13.8
13 NA 4 4 1 14
14 1 6 7 2 NA
15 1 5 6 1 13.8
16 0 4 4 1 14
17 0 3 3 0 14
18 NA 5 NA 1 14
19 0 2 3 0 14
20 0 2 3 0 14
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Table 5.3: Data after imputation for MICE

X gender race ethnicity immigrant highschool age
1 1 1 7 8 2 14.5
2 2 0 2 2 0 14
3 3 0 1 1 0 14
4 4 1 6 6 2 13.8
5 5 0 1 1 0 14
6 6 0 1 1 0 14
7 7 1 5 6 2 13.8
8 8 0 2 2 0 14
9 9 1 5 6 2 13.8
10 10 0 3 3 0 14
11 11 0 1 1 0 14
12 12 1 6 6 2 13.8
13 13 0 4 4 1 14
14 14 1 6 7 2 15
15 15 1 5 6 1 13.8
16 16 0 4 4 1 14
17 17 0 3 3 0 14
18 18 1 5 6 1 14
19 19 0 2 3 0 14
20 20 0 2 3 0 14

102



5.6 Amelia

Amelia II ”multiply imputes” missing data in a single cross-section (such as a survey), from

a time series (like variables collected for each year in a country), or from a time-series-

cross-sectional data set (such as collected by years for each of several countries). Amelia II

implements our bootstrapping-based algorithm that gives essentially the same answers as

the standard IP or EM is approaches, is usually considerably faster than existing approaches

and can handle many more variables. The program also generalizes existing approaches by

allowing for trends in time series across observations within a cross-sectional unit, as well as

priors that allow experts to incorporate beliefs they have about the values of missing cells

in their data. Amelia II also includes useful diagnostics of the fit of multiple imputation

models. The program works from the R command line or via a graphical user interface that

does not require users to know R. Amelia, multiple imputation involves imputing m values

for each missing cell in your data matrix and creating m ”completed” data sets. (Across

these completed data sets, the observed values are the same, but the missing values are

filled in with different imputations that reflect our uncertainty about the missing data.)

After imputation, Amelia will then save the m data sets. Once this process is done we can

then apply appropriate statistical method complete m data sets, and use a simple procedure

to combine the results. Under normal circumstances, you only need to impute once and

can then analyze the m imputed data sets as many times and for as many purposes as

you wish. The advantage of Amelia is that it combines the comparative speed and ease-

of-use of the algorithm with the power of multiple imputation, to let you focus on your

substantive research questions rather than spending time developing complex application-

specific models for non-response in each new data set. Unless the rate of missingness is

exceptionally high, m=5 ( default) will usually be adequate. Other methods of dealing

with missing data, such as listwise deletion, mean substitution, or single imputation, are

in common circumstances biased, inefficient, or both. When multiple imputation works

properly, it fills in data in such a way as to not change any relationships in the data but
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which enables the inclusion of all the observed data in the partially missing rows. Amelia

II is a newer version of program, and follows same purpose as the first version of Amelia

by James Honaker, Anne Joseph, Gary King, Kenneth Scheve, and Naunihal Singh [17].

Sample R code for generating sample missing data.

library(missForest)

library(mice)

MyDataInput <- read.csv(file="data-education-50-r.csv", header=TRUE, sep=",")

MyDataInput.mis <- prodNA(MyDataInput, noNA = 0.1)

print("Create data-education-50-r-mis.csv with missing data")

write.csv(MyDataInput.mis,’data-education-50-r-mis.csv’)

R code for finding missing data.

library(Amelia)

MissingData<-read.csv(file=’data-education-50-r-mis.csv’)

imputed_Data <- amelia(MissingData,m=5, parallel = "multicore", noms = "Species")

print(imputed_Data)

print("Save data after imputation to data-education-50-r-mis-imputation.csv")

write.amelia(imputed_Data, file.stem = "data-education-50-r-mis-imputation.csv")

5.7 missForrest

missForest is a nonparametric imputation method for basically any kind of data. It can

cope with mixed-type of variables, nonlinear relations, complex interactions and high di-

mensionality (p >> n). It only requires the observation (i.e. the rows of the data frame

supplied to the function) to be pairwise independent. The algorithm is based on random

forest and is dependent on its R implementation randomForest by Andy Liaw and Matthew

Wiener. Put simple (for those who have skipped the previous paragraph): for each variable
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Table 5.4: Data for Amelia
gender race ethnicity immigrant highschool age
1 7 8 2 14.5
0 2 2 0 14
0 1 1 0 14
1 6 6 2 13.8
0 1 1 0 14
0 1 1 0 14
1 5 6 2 13.8
0 2 2 0 14
1 5 6 2 13.8
0 3 3 1 14
0 2 2 0 14
1 6 6 2 13.8
0 4 4 1 14
1 6 7 2 15
1 5 6 1 13.8
0 4 4 1 14
0 3 3 0 14
1 5 5 1 14
0 2 3 0 14
0 2 3 0 14
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Table 5.5: Sample Missing Data for Amelia

gender race ethnicity immigrant highschool age
1 1 7 8 2 14.5
2 0 2 2 0 14
3 NA 1 1 0 14
4 1 6 6 2 13.8
5 0 1 1 NA 14
6 NA 1 1 0 14
7 1 5 6 2 13.8
8 NA 2 2 0 14
9 1 5 6 2 13.8
10 0 3 3 NA 14
11 0 NA NA 0 14
12 1 6 6 2 13.8
13 NA 4 4 1 14
14 1 6 7 2 NA
15 1 5 6 1 13.8
16 0 4 4 1 14
17 0 3 3 0 14
18 NA 5 NA 1 14
19 0 2 3 0 14
20 0 2 3 0 14
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Table 5.6: Data after imputation for Amelia

X gender race ethnicity immigrant highschool age
1 1 1 7 8 2 14.5
2 2 0 2 2 0 14
3 3 0.399867 1 1 0 14
4 4 1 6 6 2 13.8
5 5 0 1 1 0.291427 14
6 6 0.120429 1 1 0 14
7 7 1 5 6 2 13.8
8 8 -0.01615 2 2 0 14
9 9 1 5 6 2 13.8
10 10 0 3 3 0.890275 14
11 11 0 1.805109 1.731756 0 14
12 12 1 6 6 2 13.8
13 13 0.256045 4 4 1 14
14 14 1 6 7 2 14.17264
15 15 1 5 6 1 13.8
16 16 0 4 4 1 14
17 17 0 3 3 0 14
18 18 0.702625 5 4.300979 1 14
19 19 0 2 3 0 14
20 20 0 2 3 0 14
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missForest ts a random forest on the observed part and then predicts the missing part. The

algorithm continues to repeat these two steps until a stopping criterion is met or the user

specied maximum of iterations is reached. For further details see Stekhoven and Buhlmann

[18]. To understand the remainder of this user guide it is important to know that missFor-

est is running iteratively, continuously updating the imputed matrix variable-wise, and is

assessing its performance between iterations. This assessment is done by considering the

difference(s) between the previous imputation result and the new imputation result. As

soon as this difference (in case of one type of variable) or differences (in case of mixed-type

of variables) increase the algorithm stops. missForest provides the user with an estimate

of the imputation error. This estimate is based on the out-of-bag (OOB) error estimate

of random forest. Stekhoven and Buhlmann [18] showed that this estimate produces an

appropriate representation of the true imputation error.

Sample R code.

library(mice)

library(randomForest)

library(missForest)

MissingData<-read.csv(file=’data-education-50-r-mis.csv’)

imputed_Data <- missForest(MissingData)

print(imputed_Data)

print("Save data after imputation to data-education-50-r-mis-imputation.csv")

write.csv(imputed_Data$ximp,’data-education-50-r-mis-imputation.csv’)
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Table 5.7: Description of columns

1 gender
2 race
3 ethnicity
4 immigrant
5 highschoolage
6 highschool rank
7 dual credit
8 ap credit
9 combined sat
10 parent mother
11 parent father
12 gross income
13 degree completion

Table 5.8: Sample input data

0 1 1 0 14 2 0 0 0 1 1 37368 0
0 3 4 1 14 2 0 0 1 1 1 59473 1
1 6 7 2 15 3 1 1 2 3 3 88947 2
1 7 8 2 14.5 3 1 1 2 4 4 100000 2
1 6 7 2 15 3 1 1 2 3 3 92631 2
0 4 4 1 14 2 0 0 1 1 1 63157 1
0 3 3 1 14 2 0 0 1 1 1 55789 1
0 2 3 0 14 2 0 0 0 1 1 48421 0
1 7 8 2 14.5 3 1 1 2 4 4 96315 2
0 2 2 0 14 2 0 0 0 1 1 41052 0
0 1 1 0 14 1 0 0 0 1 1 30000 0
1 5 6 1 13.8 2 1 1 1 2 1 77894 1
1 5 6 2 13.8 2 1 1 2 2 2 81578 2
0 3 3 0 14 2 0 0 0 1 1 52105 0
1 5 5 1 14 2 1 1 1 2 1 74210 1
1 4 5 1 14 2 1 1 1 1 1 70526 1
1 6 7 2 15 3 1 1 2 2 2 85263 2
0 2 2 0 14 2 0 0 0 1 1 44736 0
1 4 5 1 14 2 1 1 1 1 1 66842 1
0 1 1 0 14 1 0 0 0 1 1 33684 0
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Table 5.9: Sample data with missing values.

1 0 1 1 0 14 2 0 0 0 1 1 37368 0
2 0 NA 4 1 14 2 0 0 1 1 1 59473 1
3 1 6 7 2 15 3 1 1 2 3 3 88947 2
4 1 7 NA 2 14.5 3 1 1 2 4 4 100000 2
5 1 6 7 2 15 NA 1 NA 2 3 3 92631 2
6 0 4 4 1 14 2 NA 0 1 NA 1 63157 1
7 0 3 3 1 14 NA 0 0 NA NA 1 55789 1
8 0 2 3 0 14 2 NA 0 0 NA 1 48421 0
9 1 7 8 2 14.5 3 NA 1 2 4 4 96315 2
10 0 NA 2 0 14 2 0 0 0 1 1 41052 0
11 0 1 1 0 14 1 0 0 0 1 1 30000 0
12 1 5 NA 1 13.8 2 1 1 1 2 1 77894 1
13 1 5 6 2 13.8 2 1 1 2 2 2 81578 2
14 0 3 3 0 14 NA 0 0 0 1 1 52105 0
15 1 5 5 1 NA 2 1 1 1 2 1 74210 1
16 1 4 5 1 14 NA 1 1 1 1 1 70526 1
17 1 6 7 2 15 3 1 1 2 2 2 85263 2
18 0 2 2 0 14 2 0 0 0 1 1 44736 0
19 1 4 5 1 14 NA 1 1 1 1 1 NA 1
20 0 1 1 0 14 1 NA 0 0 1 1 33684 0
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Table 5.10: Data after imputation

1 1 0 1 1 0 14 2 0 0 0 1 1 37368 0
2 2 0 3.493 4 1 14 2 0 0 1 1 1 59473 1
3 3 1 6 7 2 15 3 1 1 2 3 3 88947 2
4 4 1 7 7.53 2 14.5 3 1 1 2 4 4 100000.0 2
5 5 1 6 7 2 15 2.933 1 1 2 3 3 92631 2
6 6 0 4 4 1 14 2 0.25 0 1 1.05 1 63157 1
7 7 0 3 3 1 14 1.997 0 0 0.553 1.04 1 55789 1
8 8 0 2 3 0 14 2 0 0 0 1.03 1 48421 0
9 9 1 7 8 2 14.5 3 1 1 2 4 4 96315 2
10 10 0 1.576 2 0 14 2 0 0 0 1 1 41052 0
11 11 0 1 1 0 14 1 0 0 0 1 1 30000 0
12 12 1 5 5.242 1 13.8 2 1 1 1 2 1 77894 1
13 13 1 5 6 2 13.8 2 1 1 2 2 2 81578 2
14 14 0 3 3 0 14 1.932 0 0 0 1 1 52105 0
15 15 1 5 5 1 13.941 2 1 1 1 2 1 74210 1
16 16 1 4 5 1 14 1.985 1 1 1 1 1 70526 1
17 17 1 6 7 2 15 3 1 1 2 2 2 85263 2
18 18 0 2 2 0 14 2 0 0 0 1 1 44736 0
19 19 1 4 5 1 14 1.965 1 1 1 1 1 70331.232 1
20 20 0 1 1 0 14 1 0.04 0 0 1 1 33684 0

Similar results it is possible to get by using different software packages. Appropriate

code in R is presented in the next sections.
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5.8 MI

mi package in R has several features that allows the user to get inside the imputation process

and evaluate the reasonableness of the resulting models and imputations. These features

include: choice of predictors, models, and transformations for chained imputation models;

standard and binned residual plots for checking the fit of the conditional distributions

used for imputation. With plots for comparing the distributions of observed and imputed

data. In addition, mi uses Bayesian models and weakly informative prior distributions to

construct more stable estimates of imputation models. The goal is to have a demonstration

package that (a) avoids many of the practical problems that arise with existing multivariate

imputation programs, and (b) demonstrates state-of-the-art diagnostics that can be applied

more generally and can be incorporated into the software of others [19].

R code.

library(mi)

MissingData<-read.csv(file=’data-education-50-r-mis.csv’)

imputations <- mi(MissingData)

summary(imputations )

mi2stata(imputations ,m=5, file=’data-education-50-r-mis-imputation.csv’)

112



Table 5.11: Sample data with missing values (10%) for MI.

1 0 2 2 0 14 2 0 0 0 1 1 44482 0
2 1 7 7 2 15 3 1 1 2 3 3 92758 2
3 0 1 1 0 14 1 0 0 0 1 1 30000 0
4 0 1 1 0 14 2 0 0 0 1 1 37241 0
5 1 5 6 2 13.8 2 1 1 2 2 1 78275 2
6 1 6 7 2 15 3 1 1 2 2 2 85517 2
7 1 6 7 2 15 3 1 1 2 3 3 87931 2
8 0 2 2 0 14 2 0 0 0 1 1 42068 0
9 1 NA 6 2 13.8 2 1 1 2 2 2 83103 2
10 0 1 2 0 14 2 0 0 0 1 1 39655 0
11 0 1 1 0 14 1 0 0 0 1 1 34827 0
12 0 3 3 1 14 2 0 0 1 1 1 54137 1
13 1 5 6 2 13.8 2 1 1 2 2 2 80689 2
14 0 2 2 0 14 2 0 0 0 1 1 46896 0
15 0 4 4 1 14 2 0 0 1 1 1 63793 1
16 0 3 4 1 14 2 0 0 1 1 1 NA 1
17 1 5 6 1 13.8 2 1 1 1 2 1 75862 1
18 1 7 8 2 14.5 3 1 1 2 4 4 97586 2
19 0 4 4 1 14 2 0 0 1 1 1 61379 1
20 1 4 5 1 14 2 1 1 1 1 1 66206 1
21 1 5 5 1 14 2 1 1 1 2 1 73448 1
22 1 7 8 2 14.5 3 1 1 2 4 4 100000 2
23 0 3 3 1 14 2 0 0 1 1 1 56551 1
24 0 2 3 0 14 2 0 0 0 1 1 49310 0
25 1 4 5 1 14 2 1 1 1 1 1 71034 1
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Table 5.12: Sample data after imputation (10%) for MI.

0 2 2 0 14 2 0 0 0 1 1 44482 0
1 7 7 2 15 3 1 1 2 3 3 92758 2
0 1 1 0 14 1 0 0 0 1 1 30000 0
0 1 1 0 14 2 0 0 0 1 1 37241 0
1 5 6 2 13.8 2 1 1 2 2 1 78275 2
1 6 7 2 15 3 1 1 2 2 2 85517 2
1 6 7 2 15 3 1 1 2 3 3 87931 2
0 2 2 0 14 2 0 0 0 1 1 42068 0
1 6 6 2 13.8 2 1 1 2 2 2 83103 2
0 1 2 0 14 2 0 0 0 1 1 39655 0
0 1 1 0 14 1 0 0 0 1 1 34827 0
0 3 3 1 14 2 0 0 1 1 1 54137 1
1 5 6 2 13.8 2 1 1 2 2 2 80689 2
0 2 2 0 14 2 0 0 0 1 1 46896 0
0 4 4 1 14 2 0 0 1 1 1 63793 1
0 3 4 1 14 2 0 0 1 1 1 58965 1
1 5 6 1 13.8 2 1 1 1 2 1 75862 1
1 7 8 2 14.5 3 1 1 2 4 4 97586 2
0 4 4 1 14 2 0 0 1 1 1 61379 1
1 4 5 1 14 2 1 1 1 1 1 66206 1
1 5 5 1 14 2 1 1 1 2 1 73448 1
1 7 8 2 14.5 3 1 1 2 4 4 100000 2
0 3 3 1 14 2 0 0 1 1 1 56551 1
0 2 3 0 14 2 0 0 0 1 1 49310 0
1 4 5 1 14 2 1 1 1 1 1 71034 1
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5.9 Finding Missing Data with Neural Network

Due to the great interest in deep learning in the last decade, it is especially important

to establish unified tools for practitioners to process missing data with arbitrary neural

networks. Artificial neural networks use non-linear mathematical equations to successively

develop meaningful relationships between input and output variables through a learning

process. We applied back propagation networks to classify data along with other opti-

mization methods. The structure of back propagation networks is typically composed of

an input layer, one or more hidden layers, and an output layer, each consisting of several

neurons. ANNs can easily handle the non-linear and interactive effects of explanatory vari-

ables. The major drawback of ANNs is they cannot result in a simple probabilistic formula

of classification. Artificial neural networks use non-linear mathematical equations to suc-

cessively develop meaningful relationships between input and output variables through a

learning process.

Theoretically the methodology for feeding neural networks with missing data, by hav-

ing the model uncertainty on missing attributes by probability density functions, which

eliminates the need of direct completion (imputation) by single values.

5.9.1 Layer for processing missing data

The methodology for feeding neural networks with missing data, representation of missing

data point is denoted by (x, J), where x ∈ RD and J ⊂ {1, ..., D} the set of attributes with

missing values. Upon each missing point (x, J) we associate the subspace consisting all of

the points which coincide with x on known coordinates J
′
= {1, ..., N}/J :

S = Aff [x, J ] = x+ span(eJ),

where eJ = [ej]j∈J and ej is the jth vector in RD.

Assumption made is that the values that at the missing attributes come from the un-
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known D-dimensional probability distribution F. Then we can model the unobserved values

of (x, J) by restricting F to subspace S = Aff [x, J ]. Now it is possible that the values of

incomplete data point (x, J) are described by the conditional density function [20]

FS : S−→R

given by:

FS(x) =


1∫

F (s)ds
F (x), for x ∈ S,

0, otherwise.

5.9.2 Predicting One Missing Variable with Neural Network

To process probability density functions (representing missing data points) by neural net-

works, we generalize the neurons activation function. We define the generalized response

(activation) of a neuron n : RD−→R on FS as the mean output:

n(FS) = E[n(x)|x ∼ FS] =

∫
n(x)FS(x)dx.

From the neurons response we move back to same step size as before first layer while

the rest of network architecture can remain unchanged. Basic requirement is the ability of

computing expected value with respect to FS.

Recall that the ReLU neuron is given by,

ReLUw,b(x) = max(wTx+ b, 0),

where w ∈ RD and b ∈ R are the bias.

With TRUE vales being = 0, 0, 1, 1, 1 . As we can see our neural network was able to

forecast to the closest value of given TRUE value to data. TensorFlow code is provided,
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below.

import pandas as pd

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from keras.utils import to_categorical

#read in training data

train_df1 = pd.read_csv(’data-education-1000-r.csv’)

train_df2 = pd.read_csv(’data-education-1000-r-predict.csv’)

#create a dataframe with all training data except the target column

train_X = train_df1.drop(columns=[’degree_completion’])

train_X_Predict = train_df2.drop(columns=[’degree_completion’])

#create a dataframe with only the target column

train_y = train_df1[[’degree_completion’]]

#create model

model = Sequential()

#get number of columns in training data

n_cols_x = train_X.shape[1]

n_cols_y = train_y.shape[1]

#add model layers

model.add(Dense(10, activation=’relu’, input_shape=(n_cols_x,)))

model.add(Dense(10, activation=’relu’))
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model.add(Dense(n_cols_y))

#compile model using mse as a measure of model performance

model.compile(optimizer=’adam’, loss=’mean_squared_error’)

early_stopping_monitor = EarlyStopping(patience=3)

#train model

model.fit(train_X, train_y,epochs=2000, verbose=1)

print("prediction")

print(model.predict(train_X_Predict))

Summary of the accuracy of prediction is given below.

100 epochs

Number of Errors=476

Number of rows=1000

Number of correct answers in percent=52.4

Number of errors in percent=47.6

200 epochs

number of Errors=184

Number of rows=1000

Number of correct answers in percent=81.6

Number of errors in percent=18.4

500 epochs

Number of Errors=100

Number of rows=1000

Number of correct answers in percent=90.0
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Number of errors in percent=10.0

1000 epochs

Number of Errors=0

Number of rows=1000

Number of correct answers in percent=100.0

Number of errors in percent=0.0
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Chapter 6

Conclusions

6.1 Neural Networks

I’ve presented applications of neural networks, a modern machine learning method, to the

problem of prediction in customer credit card default, with 9 different countries stock mar-

ket and the SP500. With our last topic consisted of imputation methods and finding the

missing values with the use of Neural Networks. The results are promising, but could still

be improved. One important lesson learned from the preliminary experiments is that pre-

processing of the data is crucial for obtaining good results. The results also contain some

findings which are counter-intuitive and should be investigated further. There are many

avenues for future work. The most obvious one is to use more than one previous data point

in the prediction, or even a bigger observation made the bigger our data-set is the more

usage we seem to have over the training and forecasting stage with application of different

methodologies; to those that are increasing along this topic of forecasting data. All of this

should help improve performance of models. The experiment could be improved by includ-

ing stocks not based on their individual performance, but based on their ability to fit the

residual error remaining from the other stocks. More data preprocessing (e.g. smoothing)

could help. We note that a different way to use recurrent neural network, Long-short term

memory (LSTM), would be as a layer on top of a regular financial model. For example, an

RNN could use the parameters of a linear autoregression model as inputs, rather than raw

data, and predict a non-linear effect on the future data, promising work.

As for general approach for adapting neural networks to process incomplete data, which
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is able to train on data set containing only incomplete samples. For our strategy in in-

troducing input layer for processing missing data, which can be used for a wide range of

networks and does not require their extensive modifications. The experiments confirm its

practical usefulness in various tasks and for diverse network architectures. In particular,

it gives comparable results to the methods, which require complete data in training. With

test effectiveness of importance on testing methods presented in this thesis, I generated test

data with different properties. It is also possible to predict missing data by using different

mathematical techniques along with statistical tools, another observation made on how this

field of work is in high interest of research. For I effectively used existing statistical software

for missing data (MICE, missForest, MI, and Amelia). Due to short time, unfortunately

was not able to fully get PCA working, more complex algorithm on incomplete data. The

PCA method shows to be a promising approach for a large scale of missing data.

As research shows that in order to predict missing data it is possible to apply machine

learning techniques (neural networks). Which on my coming I presented this via neural

networks with the TensorFlow, and with appropriate numerical results. The presented

algorithms in work are not limited to presented applications. Many algorithms can be

extended to different problems with hidden information or to complete data when it comes

to our forecasting methods.

6.2 Future plans

In the future, I plan to prepare extensive report which present effectiveness of different ex-

isting statistical tools (MICE, missForest, MI etc.) for forecasting missing data, including

appropriate visualizations. Hidden information is especially important in cyber security,

modeling of uncertainty, in the negotiations, military problems, and safety analysis. Con-

tinuing to work on different neural networks and other machine learning techniques for

forecasting data and missing data. As experienced first hand at Los Alamos National Lab.

the growth on this Artificial Intelligence \ Deep learning there is great affirmation that
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many may be applied to multivariate time series data, along with incompleteness or miss-

ing values. I will integrated all of my work done in a special computational framework,

which allows one to do very large scale research together with appropriate documentation.
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Chapter 7

Appendix

7.1 The Iris Classification Problem by Using Tensor-

flow

Code below is based on the following reference [12].

from __future__ import absolute_import, division, print_function

import os

import matplotlib.pyplot as plt

import tensorflow as tf

tf.enable_eager_execution()

print("TensorFlow version: {}".format(tf.__version__))

print("Eager execution: {}".format(tf.executing_eagerly()))

# column order in CSV file

column_names = [’sepal_length’, ’sepal_width’, ’petal_length’,

’petal_width’, ’species’]

feature_names = column_names[:-1]

label_name = column_names[-1]

print("Features: {}".format(feature_names))

print("Label: {}".format(label_name))

train_dataset_url = "https://storage.googleapis.com/download.
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tensorflow.org/data/iris_training.csv"

train_dataset_fp = tf.keras.utils.get_file(

fname=os.path.basename(train_dataset_url),

origin=train_dataset_url)

print("Local copy of the dataset file: {}".format(train_dataset_fp))

class_names = [’Iris setosa’, ’Iris versicolor’, ’Iris virginica’]

batch_size = 32

train_dataset = tf.data.experimental.make_csv_dataset(

train_dataset_fp,

batch_size,

column_names=column_names,

label_name=label_name,

num_epochs=1)

features, labels = next(iter(train_dataset))

print(labels)

print(features)

plt.scatter(features[’petal_length’].numpy(),

features[’sepal_length’].numpy(),

c=labels.numpy(),

cmap=’viridis’)

plt.xlabel("Petal length")

plt.ylabel("Sepal length");

def pack_features_vector(features, labels):

"""Pack the features into a single array."""

features = tf.stack(list(features.values()), axis=1)

return features, labels

train_dataset = train_dataset.map(pack_features_vector)
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features, labels = next(iter(train_dataset))

print(features[:5])

model = tf.keras.Sequential([

tf.keras.layers.Dense(10, activation=tf.nn.relu, input_shape=(4,)),

tf.keras.layers.Dense(10, activation=tf.nn.relu),

tf.keras.layers.Dense(3)

])

predictions = model(features)

print(predictions[:5])

print(tf.nn.softmax(predictions[:5]))

print("Prediction: {}".format(tf.argmax(predictions, axis=1)))

print(" Labels: {}".format(labels))

def loss(model, x, y):

y_ = model(x)

return tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)

l = loss(model, features, labels)

print("Loss test: {}".format(l))

def grad(model, inputs, targets):

with tf.GradientTape() as tape:

loss_value = loss(model, inputs, targets)

return loss_value, tape.gradient(loss_value, model.trainable_variables)

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

global_step = tf.Variable(0)

loss_value, grads = grad(model, features, labels)

print("Step: {}, Initial Loss: {}".format(global_step.numpy(),

loss_value.numpy()))

optimizer.apply_gradients(zip(grads, model.trainable_variables), global_step)

print("Step: {}, Loss: {}".format(global_step.numpy(),
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loss(model, features, labels).numpy()))

# Note: Rerunning this cell uses the same model variables

from tensorflow import contrib

tfe = contrib.eager

# keep results for plotting

train_loss_results = []

train_accuracy_results = []

num_epochs = 201

for epoch in range(num_epochs):

epoch_loss_avg = tfe.metrics.Mean()

epoch_accuracy = tfe.metrics.Accuracy()

# Training loop - using batches of 32

for x, y in train_dataset:

# Optimize the model

loss_value, grads = grad(model, x, y)

optimizer.apply_gradients(zip(grads, model.trainable_variables),global_step)

# Track progress

epoch_loss_avg(loss_value) # add current batch loss

# compare predicted label to actual label

epoch_accuracy(tf.argmax(model(x), axis=1, output_type=tf.int32), y)

# end epoch

train_loss_results.append(epoch_loss_avg.result())

train_accuracy_results.append(epoch_accuracy.result())

if epoch % 50 == 0:

print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch,

epoch_loss_avg.result(),

epoch_accuracy.result()))

fig, axes = plt.subplots(2, sharex=True, figsize=(12, 8))
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fig.suptitle(’Training Metrics’)

axes[0].set_ylabel("Loss", fontsize=14)

axes[0].plot(train_loss_results)

axes[1].set_ylabel("Accuracy", fontsize=14)

axes[1].set_xlabel("Epoch", fontsize=14)

axes[1].plot(train_accuracy_results);

test_url = "https://storage.googleapis.com/download.

tensorflow.org/data/iris_test.csv"

test_fp = tf.keras.utils.get_file(fname=os.path.basename(test_url),

origin=test_url)

test_dataset = tf.data.experimental.make_csv_dataset(

test_fp,

batch_size,

column_names=column_names,

label_name=’species’,

num_epochs=1,

shuffle=False)

test_dataset = test_dataset.map(pack_features_vector)

test_accuracy = tfe.metrics.Accuracy()

for (x, y) in test_dataset:

logits = model(x)

prediction = tf.argmax(logits, axis=1, output_type=tf.int32)

test_accuracy(prediction, y)

print("Test set accuracy: {:.3%}".format(test_accuracy.result()))

tf.stack([y,prediction],axis=1)

predict_dataset = tf.convert_to_tensor([

[5.1, 3.3, 1.7, 0.5,],

[5.9, 3.0, 4.2, 1.5,],
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[6.9, 3.1, 5.4, 2.1]

])

predictions = model(predict_dataset)

for i, logits in enumerate(predictions):

class_idx = tf.argmax(logits).numpy()

p = tf.nn.softmax(logits)[class_idx]

name = class_names[class_idx]

print("Example {} prediction: {} ({:4.1f}%)".format(i, name, 100*p))
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