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1 Linear vector spaces

A linear space or vector space over R (or a general field F) is a set V – elements of V are called
vectors and the elements of R (or F) are called scalars – such that:

1. There is an operation addition (denoted by +): V ×V →V, such that V is a Abelian group
under +:

(a) ∀v1,v2 ∈V ⇒v1+v2 ∈V.

(b) ∀v1,v2 ∈V ⇒v1+v2 =v2+v1.

(c) ∀v1,v2,v3 ∈V ⇒ (v1+v2)+v3 =v1+(v2+v3).

(d) There exists an identity element, denoted by 0, such that ∀v ∈V there is v+0 =v.

(e) For any v ∈V, there exist a unique element v1 ∈V, such that v+v1 = 0; we denote v1

by −v.

2. There is an operation scalar multiplication (denoted by ×, ∗, ·, or simply writing the two
parts side by side): R×V→V, such that:

(a) ∀α∈R and ∀v ∈V: αv ∈V.

(b) ∀α,β ∈R and ∀v ∈V: (αβ)v =α(βv).

(c) ∀α∈R and ∀v1,v2 ∈V: α(v1+v2) =αv1+αv2.

(d) ∀α1,α2 ∈R and ∀v ∈V: (α1+α2)v =α1v+α2v.

(e) ∀v ∈V ⇒ 1 ·v =v, 0 ·v = 0.

A finite subset V = {v1,···,vn} of V is linearly independent if:

n∑
i=1

αivi = 0, ⇒ αi = 0, i= 1,···n . (1.1)

We will frequently use the Einstein notation convention where repeated index denotes summation.
For example, the left hand side of (1.1) is equivalently written as αivi.

A linearly independent set V is called a basis if any v ∈V can be expressed as:

v =αivi (1.2)

for some αi ∈R. This representation is unique, and we call (α1,···,αn) the coordinates of v under
the basis V . The number n is called the dimension of V (denoted by dim(V)) – it is independent of
the choice of the basis V , hence the dimension is a property of the vector space V itself. In general,
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the dimension of a vector space V can be infinite; in this course we only consider finite dimensional
spaces.

LetW be a non-empty subset of V, such thatW is a linear vector space under the same addition
and scalar multiplication operators, then W is called a linear subspace or simply subspace of V. A
trivial subspace of any V is V itself. Let W has the dimension m, then 1≤m≤n and we call n−m
the codimension of W, denoted by codim(W). We have:

codim(W) = dim(V)−dim(W) . (1.3)

Any basis of W can be extended to a basis of V.
In this course, we mostly deal with the Euclidean spaces1 Rn and their subspaces, where the

addition and scalar multiplication coincide with common practices. In particular, we call the vectors
e1 = (1,0,···,0), e2 = (0,1,···,0), ··· , and en= (0,···,0,1) the standard basis of Rn. Under the standard
basis, an element v = (v1,v2,···,vn) ∈ Rn has the coordinates (v1,···,vn). In this case, we usually
identify the coordinate of a vector in Rn with the vector itself.

Remark 1. In fact, for any n-dimensional vector space V, once a basis {ev1,···,evn} is fixed we can
identify any element v = vie

v
i of V with its coordinate (v1,···,vn) under this basis. This coordinate

is clearly an element of Rn; when no confusion will be caused, we will denote this coordinate vector
in Rn also by v.

2 Matrices

Let V be an n-dimensional vector space and W be an m-dimensional vector space. A linear map
or a linear transformation L: V →W is defined by:

1. ∀α∈R and ∀v ∈V: L(αv) =αL(v).

2. ∀v1,v2 ∈V ⇒L(v1+v2) =L(v1)+L(v2).

By definition, any linear map is identified by its operation on a basis of V. Let V = {ev1,···,evn} and
W = {ew1 ,···,ewm} be two bases of V and W, respectively, and we suppose:

L(evi ) = aije
w
j , ∀i= 1,···,n , (2.1)

where aij are real numbers. Then for any v = vie
v
i ∈V we have:

L(v) = viL(evi ) = viaije
w
j . (2.2)

Hence if we denote w=L(v) =wie
w
i , we have:

wj = aijvi ∀j= 1,···,m . (2.3)

Per Remark 1, the preceding relation can be written as:

w=Atv , (2.4)

1This is to be made precise later.
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where w ∈ Rm and v ∈ Rn are the coordinates identified with the two vectors, respectively; the
matrix A∈Rn×m is defined by A= [aij ]n×m, and t denotes the matrix transpose. In fact, we have
a one-to-one correspondence of all the n×m real matrices and linear transformations between the
two vector spaces (with their bases given).

It is not difficult to see that Rn×m, or the set of all linear transforms from V to W (denoted by
L(V,W)), is also a linear vector space. For example, let α1,α2∈R and L1,L2∈L(V,W) be arbitrary,
then α1L1+α2L2 also belongs to L(V,W) and it is defined as:

(α1L1+α2L2)(v) =α1L1(v)+α2L2(v), ∀v ∈V . (2.5)

Its dimension is mn.
The range of the operator L∈L(V,W) is a subset of W, which is consist of elements that can

be expressed as L(v) for some v ∈V. The kernel of the operator is a subset of V, which contains
the elements of v ∈ V such that L(v) = 0 ∈ W. We denote these two sets by Ra(L) ⊆W and
Ker(L)⊆V, respectively. Clearly Ra(L) is a subspace ofW and it corresponds to the column space
of At; Ker(L) is a subspace of V and it corresponds to the null space of AT (denoted similarly as
Ker(At)). Furthermore, we have:

dim Ra(L) = rankAt =n−dim Ker(At) = dimV−dim Ker(L) . (2.6)

We can associate the “matrix multiplication” with composition of linear transforms. Let V, W,
and Z be vector spaces with dimension n, m, and k, respectively; and we fix a basis for each of them.
Suppose L1∈L(V,W) and L2∈L(W,Z), and under the chosen bases the two operators correspond
to the matrices A∈Rn×m and B∈Rm×k; then it is not difficult to verify that L2◦L1∈L(V,Z) and
it correspond to the matrix AB ∈Rn×k.

In the special case when W=Z=V and we choose the same basis for all of them, if L∈L(V,V)
has the full range: Ra(L) =V, the corresponding matrix A is invertible. Furthermore, the inverse
of L (denoted by L−1) exists and it corresponds to A−1.

Finally, we consider the structure of a linear map L∈L(V,V); especially we consider L under
different bases. Suppose L corresponds to A under the basis {evi : 1≤ i≤n} and to Ã under another
basis {ẽvi : 1≤ i≤n}. Note that L= I ◦L◦I, where I is the identity map from V to itself. Applying
the preceding discussion to the map compositions I ◦L◦I :V→V→V→V, but equipping the first
and the fourth V with the basis {ẽvi } whereas the middle two V with the basis {evi }, we obtain:

Ãt =T−tAtT t , (2.7)

where T is the matrix corresponds to I in the last map of the chain, or equivalently T = [tij ]n×n is
given by:

evi = tij ẽ
v
j , ∀1≤ i≤n . (2.8)

As a consequence, if the matrix A is diagonalizable we can choose T such that its rows are the
eigenvectors of At, then the resulting Ã is diagonal, meaning that the action of the linear map L is
scaling each coordinate in the basis {ẽvi } by a fixed quantity that equals a diagonal element of Ã.

3 Bilinear forms and special matrices

A bilinear form is a map B: V×V →R, where for all α1,α2 ∈R and all v1,v2,v3 ∈V we have:
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1. B(α1v1+α2v2,v3) =α1B(v1,v3)+α2B(v2,v3).

2. B(v3,α1v1+α2v2) =α1B(v3,v1)+α2B(v3,v2).

If in addition B(v1,v2) =B(v2,v1) for all v1,v2 ∈ V, we call B a symmetric bilinear form. In
this case, one of the two preceding requirements is redundant.

Due to the linearity, a bilinear form is also determined by its action on vectors in a basis. Let
B(evi ,e

v
j ) = gij , then we have for v = vie

v
i and w=wie

v
i :

B(v,w) = viwjgij =vtGw . (3.1)

Hence any bilinear form is also related to a matrix G= [gij ]n×n; and if B is symmetric, this matrix
is also symmetric: gij = gji, ∀1≤ i,j≤n, or G=Gt.

Of special interest is the symmetric bilinear form associated to positive-definite matrices:

vtGv≥ 0, ∀v ∈Rn , (3.2)

and
vtGv = 0 if and only if v = 0 . (3.3)

In this case, the bilinear form is also called positive definite:

1. B(v,v)≥ 0, ∀v ∈V.

2. B(v,v) = 0 if and only if v = 0.

Such symmetric positive-definite bilinear forms are called inner product on the space V. For the
latter, we denote the bilinear form by angled brackets:

〈v,w〉G =B(v,w), ∀v,w∈V , (3.4)

where B(·,·) is defined by the symmetric positive-definite matrix G.

There are at least two things that we can talk about once an inner product is defined.
First, the above properties allow us to define a norm on elements of V:

||v||B = ||v||G
def
==
√
B(v,v) , (3.5)

which is essentially a measure of the “distance” of the element v to the zero vector 0. Due to the
linearity, we can also define the distance between any two elements of V by:

d(v,w)
def
== ||v−w||G. (3.6)

For a general positive-definite matrix G, we call this ||·||G the Riemannian metric of the vector
space V.

Now consider the case when V=Rn and the standard basis is chosen. A special metric is given
by setting G= I, the identity matrix of Rn×n, and we have:

||v||I =
√
v21 +v22 + ···+v2n , (3.7)
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the familiar Euclidean distance on the n-dimensional real spaces. In this course, we will mostly
consider Euclidean spaces and omit the I in the subscript; similarly the corresponding inner product
is denoted by 〈·,·〉.

Second, we may extend the concept of “orthogonality” to general inner-product spaces. In
particular, let 〈·,·〉G be the inner product, then v and w are orthogonal to each other under this
inner product if:

〈v,w〉G = 0, or equivalently vtGw= 0 . (3.8)

In the case of Euclidean spaces G= I, and the inner product coincide with the dot product and
(3.8) reduces to the common orthogonality condition.

4 Vector and matrix norms

We’ve seen that matrices have tight relation to linear spaces and linear transforms between these
spaces. We can interpret most topics of this course in this geometrical context. For example,
solving the linear system Ax = b can be interpreted as finding a vector x in a suitably defined
vector space V that is mapped to b in another vector space W by a linear map that corresponds to
At. Also, the process of orthogonal reduction is the same as the following: Given a symmetric
bilinear form B that corresponds to the positive definite matrix G under one particular basis,
constructing another basis such that B corresponds to the identity matrix I under this new basis.
The eigenvalue problem or the generalized eigenvalue problem have more in-depth interpretation
in this geometrical setting, and we will get back to this subject later in this course.

Meanwhile, we focus on how to measure certain quantities in the problem of solving a linear
system Ax= b for a square matrix A∈Rn×n (or a linear transform that maps a vector space into
itself). We first consider the well-posedness of this problem:

1. For any b∈Rn there is a vector x∈Rn such that Ax= b.

2. This solution is unique.

Clearly, a sufficient and necessary condition for the problem to be well posed is that A is nonsingular.
If A is singular, Ax=b only possesses a solution when b∈Ra(A); and in the latter case the solution
is not unique. We shall talk about the technique to solve a linear system with singular matrix A
much later in the course when we get to the point of singular value decomposition and generalized
inverse; at the moment let us restrict ourself to nonsingular matrices. The general form, however,
proves to be useful in several applications including the conjugate gradient method.

Let A be nonsingular, the first thing we need to realize in seeking numerical solutions to Ax=b
is that the data is often not exact. This can either due to measure imprecision or to roundoff
errors; and the errors may reside either in b or in A. Thus the actual problem that we solve is:

(A+δA)(x+δx) = b+δb , (4.1)

where δA and δb are small matrix and vector that represent the errors in data, and δx is a vector
that represents the error in the numerical solution. A fundamental question that relates to almost
any numerical method is whether this method is stable and how we can estimate the errors in the
solution given the errors in data.
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A useful tool for this purpose in the context of linear systems is the vector and matrix norms. A
norm, as mentioned before, is a measure of the difference between any vector and the zero vector;
and the ones induced by bilinear forms are special cases. Formally, we define a norm on a vector
space V as a non-negative function ||·|| :V →R+:

1. ||v|| ≥ 0, ∀v ∈V and ||v||= 0 if and only if v = 0.

2. For all α∈R and v ∈V, ||αv||= |α|||v||.

3. The triangle inequality: ∀v,w∈V, ||v+w|| ≤ ||v||+ ||w||.

Other than the norms that are induced by bilinear forms, other commonly used norms on Rn are
the Lp-norms (or simply p-norms), where 1≤ p≤∞. In particular, for 1≤ p<∞, we define:

||v||p = (|v1|p+ ···+ |vn|p)1/p , (4.2)

and for p=∞ we define:
||v||∞= max

1≤i≤n
|vi| . (4.3)

Mathematically these norms do not differ from each other very much, in the sense that any two
norms of Rn are equivalent to each other; that is, two norms ||·||1 and ||·||22 are equivalent if and
only if there exist positive constants 0<c1<c2 such that for all v ∈V:

c1||v||1≤ ||v||2≤ c2||v||1 . (4.4)

Different norms, however, have significant different implications in numerical analysis. For example,
minimization in L2 norm leads to the least squares problem that are much easier to solve than
minimization in other norms; whereas minimization in L1 norm has the special property that small
entries tend to be driven to zero, hence it has important application in data compression. Another
commonly used norm is the L∞ norm, for example trying to reduce ||δx||∞ essentially means trying
to minimize the errors in each component of x uniformly.

If we regard any matrix A as a linear map between Rn and itself (in what follows, we exchange
the role of A and At and simply denote this map by x 7→Ax), any norm on Rn induces a norm on
Rn×n as follows:

||A|| def== max
x:||x||6=0

||Ax||
||x||

. (4.5)

If the vector norm is denoted by ||x||p, we also denote the induced matrix-norm by ||A||p.

Remark 2. We have omitted the important questions of showing (4.2), (4.3), or (4.5) indeed
defines a norm, especially the triangle inequalities.

We have the following results of several induced matrix norms: Let A∈Rn×n, then:

||A||1 = max
1≤j≤n

n∑
i=1

|aij | (4.6)

||A||∞= max
1≤i≤n

n∑
j=1

|aij | (4.7)

||A||2 =σmax , (4.8)

2Here we mean any two generic norms, not to be confused with the Lp-norm defined before.
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where σmax is the largest singular value of A, or equivalently σ2max is the largest eigenvalue of AtA.

Proof. We will show (4.6) and (4.8), the other one is left as exercise. For (4.6), according to
Exercise 2 we may assume in the following ||x||1 = 1 or equivalently

∑n
i=1|xi|= 1. Then:

||A||1 = max
||x||1=1

n∑
i=1

|aijxj | ≤ max
||x||1=1

n∑
i=1

n∑
j=1

|aij ||xj |

= max
||x||=1

n∑
j=1

(
n∑
i=1

|aij |)|xj | ≤ max
||x||=1

n∑
j=1

( max
1≤k≤n

n∑
i=1

|aik|)|xj |

= max
||x||=1

max
1≤k≤n

n∑
i=1

|aik|
n∑
j=1

|xj |= max
||x||=1

max
1≤k≤n

n∑
i=1

|aik|= max
1≤k≤n

n∑
i=1

|aij | .

In addition, let j0 be the index such that
∑n

i=1|aij0 | = max1≤j≤n
∑n

i=1|aij |, then we may select
x= ej0 . In this case ||x||1 = 1, and:

Ax=Aej0 = (a1j0 , a2j0 , ···, anj0)t⇒||Ax||1 =

n∑
i=1

|aij0 |= max
1≤j≤n

n∑
i=1

|aij | ,

which completes the proof of (4.6).
As for (4.8), we need to use a few results from linear algebra. In particular it is well known

that any symmetric positive-semidefinite matrix can be diagonalized by a set of orthonormal vec-
tors. Applying this result to AtA we obtain AtA=Q−1DQ=QtDQ, where Q is orthogonal and
D = diag(σ21,···,σ2n) is diagonal. Let ||x||2 = 1 be arbitrary, then using the fact that orthogonal
transformation preserves the L2-norm, we have:

||Ax||22 =xtAtAx=xtQtDQx=ytDy =
n∑
i=1

σ2i y
2
i ,

here y =Qx and thusly ||y||2 = 1. It follows that:

||Ax||22≤ max
1≤j≤n

σ2j
∑
i=1

y2i =σ2max .

Since x is arbitrary, we obtain ||A||2≤σmax.
For the equality, we may suppose σ2j0 = max1≤j≤nσ

2
j and choose x as the j0’th column of Q,

which completes the proof.

Finally, we derive an a priori estimate of the error for a simpler version of (4.1), where δA= 0.
In particular, we are interested in the relative errors ||δx||/||x|| and ||δb||/||b||, mainly due to the
mechanism of floating point numbers. Suppose A(x+δx) =b+δb and Ax=b, on the one hand we
derive:

δx=A−1δb ⇒ ||δx|| ≤
∣∣∣∣A−1∣∣∣∣||δb|| .

On the other hand:
Ax= b ⇒ ||b|| ≤ ||A||||x|| .
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Combining the two inequalities and ignoring the trivial case b= 0, we obtain:

||δx||
||x||

≤ ||A||
∣∣∣∣A−1∣∣∣∣ ||δb||

||b||
. (4.9)

The number ||A||
∣∣∣∣A−1∣∣∣∣ is called the condition number of the matrix A, denoted by κ(A). The

estimate (4.9) states that the relative error in the solution cannot grow from the relative error in
the data by a factor of κ(A).

Exercises

Exercise 1. Prove that the L1-norm and the L∞-norm on Rn are equivalent. That is, find the
two constants c1 and c2 such that (4.4) holds for these two norms. You may see that these two
constants depend on the dimension n, which provides another reason why despite their mathematical
equivalence, the two norms are treated extremely differently for practical applications when n is very
large.

Exercise 2. Show that (4.5) is equivalent to:

||A||= max
x:||x||=1

||Ax|| . (4.10)

Exercise 3. Let A be diagonalizable with real eigenvalues. The spectral radius of a matrix A,
denoted by ρ(A), is the largest absolute value of eigenvalues of A:

ρ(A) = max{|λ| : there exists nonzero v ∈Rn such that Av =λv} . (4.11)

Show that any induced matrix norm (4.5) satisfies:

||A|| ≥ ρ(A) . (4.12)

Exercise 4. Prove (4.7).

Exercise 5. We would like to derive an estimate of the growth in relative errors for the equa-
tion (4.1). Particularly, we suppose A is non-singular and δA is small enough such that A+δA is
also nonsingular and the following inequality is true:

||δA||
||A||

<
1

κ(A)
.

Our estimate proceeds as below. Taking the difference between (4.1) and Ax= b gives:

(A+δA)δx= δb−δAx , (4.13)

and we begin with estimating
∣∣∣∣(A+δA)−1

∣∣∣∣. For this purpose, show that:∣∣∣∣(A+δA)−1
∣∣∣∣≤ κ(A)

||A||
· 1

1−κ(A)(||δA||/||A||)
.

Next, using this estimate and (4.13) to derive:

||δx||
||x||

≤ κ(A)

1−κ(A) ||δA||||A||

(
||δb||
||b||

+
||δA||
||A||

)
.
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