
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 2: The Gaussian Elimination and LU Decomposition

Xianyi Zeng
Department of Mathematical Sciences, UTEP

1 The Gaussian elimination

The method now known as The Gaussian Elimination (GE) first appeared about two thousand
years ago; the modern notation was, however, devised by Carl F. Gauss and later adopted by
“hand computers” to solve the normal equations of least-squares problems.

In essence, it is a technique that allows one to solve a small linear system Ax=b, or equivalently
computing A−1, by hand. For example, let us consider the next linear system due to W. S.
Ericksen [1]:  1 1 1

3 4 5
3 6 10

 x1x2
x3

=

 1
0
0

 .
The recipe starts with aligning A with b as [A | b], and then uses row operations to transform the
A part into the identity matrix: 1 1 1 1

3 4 5 0
3 6 10 0

 ⇒
 1 1 1 1

0 1 2 −3
0 3 7 −3

 ⇒
 1 1 1 1

0 1 2 −3
0 0 1 6

 ⇒
 1 1 0 −5

0 1 0 −15
0 0 1 6

 ⇒
 1 0 0 10

0 1 0 −15
0 0 1 6

 .
In the end, we obtain [I | x] if no row exchange occurs. The similar technique can be used to
compute the inverse of a matrix A, particularly we use row operations to transform [A |I] to [I |B];
and if no row exchange occurs we have B=A−1.

The main observation here is that: triangular matrices are easy to invert and any non-singular
matrix can be reduced to a upper triangular matrix purely by row operations. To this end, let’s
first consider reducing a general matrix A= [aij] to an upper triangular form. Define A(0) =A and

the k-th step in the GE process transform A(k−1) to A(k) = [a
(k)
ij], such that:

a
(k)
ij = 0 ∀j≤ k and j < i . (1.1)

For now we assume there is no row exchange, hence the k-th step involves using the k-th row of

A(k−1) (more specifically a
(k−1)
kk) to eliminate all the non-zero elements a

(k−1)
ik , i>k. More precisely:

a
(k)
ij =

 a
(k−1)
ij i≤ k ,

a
(k−1)
ij − a

(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj i> k .

(1.2)

It is not difficult to check that if A(k−1) satisfies (1.1), then A(k) obtained from (1.2) also obeys

1

(1.1). In the matrix notation, (1.1) summarizes as:

A(k) =L(k)A(k−1) , where L(k) =



1
...

. . .

0 ··· 1
0 ··· −lk+1,k 1
0 ··· −lk+2,k 0 1
...

. . .
...

...
...

. . .

0 ··· −lnk 0 0 ··· 1


and lik =

a
(k−1)
ik

a
(k−1)
kk

. (1.3)

Let the process continue until the n-th step, and we eventually obtain:

A(n) =L(n)A(n−1) = ···=L(n)L(n−1)···L(1)A . (1.4)

By applying (1.1) to k=n we see that A(n) is upper triangular, which is also denoted by U . Since
each L(k) is lower-triangular, their product is also so and we denote its inverse by L. Finally, we
obtain the LU decomposition of the matrix A:

A= (L(n)L(n−1)···L(1))−1A(n) =LU . (1.5)

To compute L, we first note that each L(k) of (1.3) is called an atomic triangular matrix and it
satisfies:

(L(k))−1 =



1
...

. . .

0 ··· 1
0 ··· lk+1,k 1
0 ··· lk+2,k 0 1
...

. . .
...

...
...

. . .

0 ··· lnk 0 0 ··· 1


⇒L= (L(1))−1(L(2))−1···(L(n))−1 =


1
l21 1
l31 l32 1
...

...
...

. . .

ln1 ln2 ln3 ··· 1

 ;

hence no additional computational cost is needed for obtaining L.

Taking a look at the complexity of this algorithm, the operation (1.2) involves (n−k)+(n−k)2

multiplications/divisions and (n−k)2 summations/subtractions. Thus the complexity (counted as
the number of floating point operations) of the LU decomposition is:

n∑
k=1

[
(n−k)+2(n−k)2

]
∼ 2

3
n3 .

A−1 can be computed from the inverses of L and U . Clearly, L−1 is already known, and we
look at U−1 here. Let W = [wij] be U−1, then W is also upper triangular and starting from the
last row of WU = I and moving backward:

w11 ··· w1,n−1 w1n

. . .
...

...
wn−1,n−1 wn−1,n

wnn



u11 ··· u1,n−1 u1n

. . .
...

...
un−1,n−1 un−1,n

unn

=


1

. . .

1
1


2

we obtain:

wnnunn = 1 ;

wn−1,n−1un−1,n−1 = 1 , wn−1,n−1un−1,n+wn−1,nunn = 0 ;

...

and the elements of W are computed by:

for k=n,n−1,···,1 : (1.6)

wkk =
1

ukk
;

for l= k+1,···,n :

wkl =−wll

l−1∑
j=k

wkjujl .

This process involves:

n∑
k=1

[
1+

n∑
l=k+1

(l−k+1)

]
=

n∑
k=1

1

2
(n−k+1)(n−k+2) =

n∑
k=1

1

2
k(k+1)∼ 1

6
n3

multiplications/divisions, and:

n∑
k=1

n∑
l=k+1

(l−k−1) =

n∑
k=1

1

2
(n−k)(n−k−1)∼ 1

6
n3

summations. Hence the complexity of computing U−1 is ∼ 1
3n

3. Computing L−1 is similar to that
of U−1, except that all the diagonal elements of L is unity; and the complexity is also ∼ 1

3n
3.

The diagonal elements of L are unities, but those of U are not. However, we can write U =
DŨ , so that D is a diagonal matrix containing the diagonal entries of U , and Ũ =D−1U is an
upper triangular matrix with unity diagonal elements. In this case we call A = LDŨ the LDU
decomposition, and whenever appropriate we will also denote it by A=LDU .

Theorem 1.1. If A is non-singular and the LDU decomposition exists, then it is also unique.

Proof. Let A=L1D1U1 and A=L2D2U2 be two LDU decompositions, then we have:

L1D1U1 =L2D2U2 ⇒ L−12 L1 =D2U2U
−1
1 D−11 ,

where we have used the fact that if A is non-singular, both D1 and D2 are non-singular. It is not
difficult to check that the left hand side is a lower-triangular matrix with unity diagonal entries
whereas the right hand side is an upper-triangular matrix. Hence the only way that the equality
can hold is that both sides are diagonal matrices and particularly for the left hand side we have
L−12 L1 = I or equivalently L1 =L2.

Similarly, we can also write down:

D−12 L−12 L1D1 =U2U
−1
1

and deduce that U2 =U1. Finally, we have D1 =L−11 AU−11 =L−12 AU−12 =D2.

3

2 Analysis of the LU decomposition and pivoting

Theorem 1.1 assumes the existence of the LDU decomposition. Now let us investigate more about
this issue. Particularly, if the Gaussian elimination process in Section 1 succeeds without any
trouble, the LDU decomposition exists by construction. The process can only break down if some

a
(k−1)
kk = 0 in (1.2) (with possible the exception for the case k=n, if the LU decomposition not the

LDU one is sought).
Such a breakdown, however, may happen no matter whether A is singular or not. For example,

the GE process will break down immediately if a11 = 0, no matter what other entries are. A fix to
this issue is to allow row exchanges, also known as “pivoting”. To explain the idea, let us suppose

we are at the k-th step computing A(k) from A(k−1). If a
(k−1)
kk =0, one thing we can do is to identify

another row such that a
(k−1)
lk 6= 0,l > k and exchange the k-th row and the l-th row. This process

can be illustrated in matrix form as:

A(k−1)−→ Ã(k−1) =P (k)A(k−1) ,

where P (k) = [p
(k)
ij] is a special permutation matrix that differs from I in four locations:

p
(k)
kl = p

(k)
lk = 1 , p

(k)
kk = p

(k)
ll = 0 ; p

(k)
ij = δij , o.w. . (2.1)

By construction, the kk-th element of Ã(k−1) is non-zero and we can proceed according to (1.2)
with Ã(k−1) instead of A(k−1). Denoting the resulting multiplier again by L(k), we have:

A(k) =L(k)P (k)A(k−1) ,

and eventually:
U =A(n) =L(n)P (n)L(n−1)P (n−1)···L(1)P (1)A . (2.2)

This form is rather complicated comparing to the LU decomposition. However, fundamentally if we
knew ahead which rows we’ll exchange in the end, we can do all these operations at the beginning
and then apply the GE process without worrying about pivoting again. This implies that with the
help of pivoting, we can obtain the next factorization of A:

U =L−1P−1A ⇒ A=PLU . (2.3)

Here P (as well as P−1) is the product of a chain of special permutation matrices, which in
essence indicates a re-ordering of the rows when it is left-multiplied to a matrix A. The second
equation of (2.3) is known as the PLU decomposition; and similarly we can also construct the
PLDU factorization if no breakdown occurs.

In general, we can choose any two rows to exchange during the pivoting process as long as a
non-zero diagonal entry is found. In practice, however, it is almost exclusively to choose l such
that:

l= argmax
l≥k

∣∣∣a(k−1)lk

∣∣∣ , (2.4)

i.e., the largest (in absolute value) element in the k-th column below the diagonal. The benefit
of doing so is that the magnitude of each lik will be no larger than one, c.f. (1.3). We will see
later such a strategy leads to smaller accumulated roundoff errors in the final factorization. In
subsequent sections, we assume (2.4) by default and still refer to this specific pivoting strategy as
pivoting.

4

Theorem 2.1. If A is non-singular, then it has a PLDU decomposition.

Proof. To show the existence, we just need to show that the previous GE process with pivoting will
not break down. Particularly, if it breaks down at the k-th stage, on the one hand we know that:

a
(k−1)
ij = 0 , ∀i≥ k and j≤ k .

Hence A(k−1) is singular. On the other hand, we also have:

A(k−1) =L(k−1)P (k−1)···L(1)P (1)A ,

and each L(l) and P (l), l≤ k−1 are non-singular; thus the only possibility is that A is singular, a
contradiction.

Remark 1. The PLDU factorization is in general not unique. In fact, if A is non-singular there
usually exist many permutation matrix P such that the GE process of PA does not fail; then each
such a P will leads to a different PLDU factorization of the same matrix A.

Remark 2. Here we only consider using row exchanges to avoid break down of the GE algorithm,
hence the strategy discussed before is also called partial pivoting. Another strategy also allows
column exchanges simultaneously with row ones, and it is known as complete pivoting. The result
of the complete pivoting is a factorization like A = PLUQ or A = PLDUQ, where Q is also a
permutation matrix.

Finally, we note that if the complete pivoting is allowed, an argument similar to the proof of
Theorem 2.1 will show that if the process breaks down at the k-th state, then all the elements

a
(k−1)
ij , i≥ k are zero. Hence the rank of A(k−1) is k−1, or equivalently:

rankA= k−1 . (2.5)

In this case when A is singular, we can still write A = PLDUQ where L and U are triangular
matrices with unity diagonal entries, but D is singular and rankD= rankA. We can always choose
P and Q properly, so that the first rankD diagonal entries of D are non-zero.

3 The Cholesky decomposition

Let A be a non-singular symmetric matrix, and we suppose again that no pivoting is applied and
the GE process does not break. Hence by construction the factorization A=LDU exists and by
Theorem 1.1 it is also unique. Because A=At =U tDLt is also an LDU factorization, by uniqueness
we must have:

L=U t

or equivalently A=LDLt.

In the case when A is positive-definite all the diagonal entries of D are positive, and we can
write D=D

1
2D

1
2 . Defining C =LD

1
2 we arrive at:

A=CCt , (3.1)

5

where C is a lower-triangular matrix. (3.1) is known as the Cholesky decomposition of the symmetric
positive-definite matrix A; and it is easy to show that if it exists it is unique.

The next question is whether the Cholesky decomposition exists or not, with or without any
pivoting strategies. By assuming that A is positive-definite, it is automatically non-singular; but
the fact that the GE process will not breakdown without any pivoting is not as obvious. To obtain
an idea, we first consider the case when the GE process breaks down in the first step, meaning that
a11 = 0. This is, however, not allowed, since it indicates:

et1Ae1 = 0 ,

contradicting the positive-definiteness assumption.
To proceed, we would like to modify the GE algorithm a little bit. That is, instead of computing

the entries of L and U , we would like to directly compute the elements of C – which at least saves
the storage cost by a half. Writing down (3.1) more explicitly:

a11 a12 ··· a1n
a12 a22 ··· a2n
...

...
. . .

...
a1n ··· ··· ann

=


c11
c12 c22
...

...
. . .

c1n c2n ··· cnn



c11 c12 ··· c1n

c22 ··· c2n
. . .

...
cnn

 .
We thusly deduce:

a11 = c211 ;

a12 = c11c12 , a22 = c212+c222 ;

a13 = c11c13 , a23 = c12c13+c22c23 , a33 = c213+c223+c233 ;

...

and obtain the following algorithm:

for k= 1,2,···,n : (3.2)

for l= 1,2,···,k−1 :

clk =
1

cll

alk− l−1∑
j=1

cjlcjk

 ;

ckk =

√√√√akk−
k−1∑
l=1

c2lk .

Showing that this algorithm will not break is equivalent to show that the quantity under the square
root operator is always positive for all iterations, which we will prove by induction.

Proof. For k= 1, we just need to show a11> 0, which is equivalent to:

et1Ae1> 0 .

Now we suppose that the algorithm proceeds until the k-th iteration (k > 1). Let us denote the
upper-left (k−1)× (k−1) and k×k sub-matrices of A by Ak−1 and Ak, respectively; and we also

6

denote the upper-left (k−1)×(k−1) sub-matrix of C, which is already constructed, by Ck−1. Then
both Ak−1 and Ak are symmetric positive-definite and Ak−1 = Ck−1C

t
k−1. With cll,l = 1,···,k−1

available, we can compute clk,l < k and define:

ak =


a1k
a2k
···

ak−1,k

 , and ck =


c1k
c2k
···

ck−1,k

 , we have ak =Ck−1ck .

It follows that:

Ak =

[
Ak−1 ak

at
k akk

]
=

[
Ck−1C

t
k−1 Ck−1ck

ctkC
t
k−1 akk

]
.

Let xt = [−ctkC
−1
k−1 1], by the positive-definiteness of Ak we have xtAkx> 0, or equivalently:

akk−ctkck> 0 ,

which indicates that the algorithm succeeds in the k-th iteration as well.

We can study the computational cost with the algorithm 3.2: It has:

n∑
k=1

[
k−1∑
l=1

l+(k−1)

]
∼ 1

6
n3

multiplications/divisions; and it has:

n∑
k=1

[
k−1∑
l=1

(l−1)+(k−1)

]
∼ 1

6
n3

summations/subtractions; in addition, there are n square root operations. Because the cost of
computing the square root is independent of n, we conclude that the complexity of the Cholesky
decomposition (3.2) is ∼ 1

3n
3, half of that for LU decomposition of general matrices.

Finally, we note that although no pivoting is needed in computing the Cholesky decomposition,
allowing certain pivoting strategy can improve the robustness of the algorithm, especially when A
is ill-conditioned. When pivoting is used, we do not want to destroy the symmetry structure of
the matrix; hence we look at the counterpart of the PLUQ or PLDUQ factorization and make sure
that P =Qt. In this case, we have:

A=PCCtP t , (3.3)

where P is a permutation matrix and C is non-singular lower-triangular.

4 Roundoff error analysis

Modern computers use floating point numbers to represent real numbers. In this framework, only
a subset F of real numbers can be represented exactly:

f =±.d1d2···dt×βe , 0≤ di<β , d1 6= 0 , L≤ e≤U . (4.1)

7

The first part .d1···dt is called the significand and the number e is called the exponent. The
significand is represented in the basis of β, for example β=10 corresponds to decimal numbers and
β = 2 corresponds to binary numbers. Thus for any nonzero f ∈ F , the smallest and the largest
magnitudes of f are:

fmin≤ |f | ≤ fmax , fmin =βL−1 , and fmax =βU (1−β−t) . (4.2)

Define the set G as:
G= {x∈R : fmin≤ |x| ≤ fmax}∪{0} , (4.3)

then the floating point operator fl: G →F is defined as the nearest representable floating point
number (ties are handled by rounding away from zero). We have for all x∈G:

fl(x) =x(1+ε) , |ε| ≤ ε0 =
1

2
β1−t . (4.4)

Double-precision system on typical machines have (β,t,L,U) = (2,52,−1023,1024), which makes
ε0 = 2−52≈ 2×10−16 (try the eps function in Matlab).

For this reason, we cannot expect all the entries of A or all the component of b are precisely
represented, and have to accept the fact that the closest floating-point representations of A and b
are A+δA and b+δb, respectively:

|δaij | ≤ ε0|aij | , |δbi| ≤ ε0|bi| .

To make the notations more compact, we define fl(A) by the matrix [fl(aij0], |A| by the matrix
[|aij |], and the notation A≤B means aij ≤ bij , ∀i,j; and similarly for vectors. We can express the
previous inequalities as:

|fl(A)−A| ≤ ε0|A| , |fl(b)−b| ≤ ε0|b| . (4.5)

In the rest, we may use fl(A)−A and δA interchangeably.
It is not very difficult to check that the estimates (4.5) carry to several norms:

||δA||∞≤ ε0||A||∞ , ||δA||1≤ ε0||A||1 , ||δb||p≤ ε0||b||p . (4.6)

The next question is, if we apply some algorithm to the matrix fl(A), what will be error in the
final results. For example, let B be the result of applying the GE algorithm to compute the inverse
of fl(A), how different it will be from A−1? The answer to such questions is rather complicated, so
we start with simple operations to prepare our mindset for an analysis of the Gaussian elimination.

First of all, computing units are built in a way such that for the operation op, being anything
in {+, −, ×, ÷}, if a,b∈F and a op b∈G, then:

|fl(a op b)−(a op b)| ≤ ε0|a op b| . (4.7)

Next, we consider computing the dot product of two floating point vectors x and y using the
following algorithm:

s= 0 , (4.8)

for i= 1,2,···,n :

s= s+xiyi .

8

Let sp be the (floating-point) outcome of the p-th iteration, we thusly have s1 =fl(x1y1)=x1y1(1+
δ1) and for p≥ 2:

sp = fl(sp−1+fl(xpyp)) = (sp−1+xpyp(1+δp))(1+εp) ,

where all δp and εp have magnitudes no larger than ε0. It follows that:

fl(x ·y) = fl(sn) =
n∑

i=1

xiyi(1+γi) , γi = (1+δi)
n∏

j=max(i,2)

(1+εj)−1 . (4.9)

There are two conclusions that we can draw here. First, noticing that |γi|≤nε0+O(ε20), we obtain
an estimate on the roundoff error of the inner product:

|fl(x ·y)−x ·y| ≤nε0|x| · |y|+O(ε20) . (4.10)

Second, we notice that a tighter bound for γi is |γi| ≤min(n− i+2,n)ε0 +O(ε20), with the bound
becoming smaller for larger i. Hence it is advantageously to order the items xiyi in a way such that
the largest is left to the last, for the purpose of reducing the roundoff error in the final result.

A direct corollary of (4.10) is:

|fl(AB)−AB| ≤nε0|A||B|+O(ε20) , (4.11)

where A and B are floating-point n×n matrices.

Now let’s look at the Gaussian elimination process. To begin with, if we can perform all the
operations exactly and the only errors are in the initial data A and b, follow the last exercise from
previous lecture we have:

||δx||∞
||x||∞

≤ 4ε0κ∞(A) ,

if ε0κ∞(A)< 1/2. Hence a bottom line is that we cannot expect accurate solution of Ax=b, if the
matrix A itself is very ill-conditioned such that ε0κ∞(A)∼O(1).

Then we assume that both A and b are floating-point quantities, and try to derive an error
bound on the roundoff error resulting from the GE process. For now, let us assume that no pivoting
is used and the GE process in Section 1 is successful. Let L̂Û =A+E be the result of the GE
process, then we can obtain a posteriori estimate:

|E| ≤ 2nε0(|A|+
∣∣L̂∣∣∣∣Û ∣∣)+O(ε20) . (4.12)

Proof. We use the method of induction and (4.12) clearly holds for n= 1. Now suppose that it
holds for all (n−1)×(n−1) floating point matrices and we consider an n×n matrix A. Write:

A=

[
α ut

v B

]
,

then in the first step of the algorithm we’d like to compute:

A=

[
1 0
z I

][
α ut

0 B−zut

]
, z =

1

α
v .

9

Let ẑ = fl(z), the actual computations are:

L̂Û =

[
1 0

ẑ L̂1

][
α ut

0 Û1

]
,

where L̂1Û1 = Â1+E1 and Â1 = fl(B−fl(ẑut)) =B− ẑut+F . By induction:

|E1| ≤ 2(n−1)ε0(
∣∣Â1

∣∣+ ∣∣L̂1

∣∣∣∣Û1

∣∣)+O(ε20) .

It follows that:

E= L̂Û−A=

[
0 0

αẑ−v F +E1

]
⇒ |E| ≤

[
0 0

ε0|v| |F |+ |E1|

]
.

Here we have used the estimate that:∣∣αẑ−v
∣∣= ∣∣α(fl(α−1v)−α−1v)

∣∣≤ ∣∣αε0(α−1v)
∣∣= ε0|v| .

For the last two terms, we first estimate |F | and
∣∣Â1

∣∣:
|F | ≤

∣∣fl(B−fl(ẑut))−(B−fl(ẑut))
∣∣+ ∣∣fl(ẑut)−(ẑut)

∣∣
≤ ε0

∣∣B−fl(ẑut)
∣∣+ε0

∣∣ẑ∣∣|u|t+O(ε20)≤ 2ε0(|B|+
∣∣ẑ∣∣|u|t)+O(ε20) ,

and ∣∣Â1

∣∣≤ ∣∣B− ẑut
∣∣+ |F | ≤ (1+2ε0)(|B|+

∣∣ẑ∣∣|u|t)+O(ε20) .

Hence

|E1|≤2(n−1)ε0[(1+2ε0)(|B|+
∣∣ẑ∣∣|u|t)+

∣∣L̂1

∣∣∣∣Û1

∣∣]+O(ε20)=2(n−1)ε0(|B|+
∣∣ẑ∣∣|u|t+∣∣L̂1

∣∣∣∣Û1

∣∣)+O(ε20),

and
|F |+ |E1| ≤ 2n(|B|+

∣∣ẑ∣∣|u|t+ ∣∣L̂1

∣∣∣∣Û1

∣∣)+O(ε20) .

Consequently

|E| ≤ 2nε0

[
0 0

|v| |B|+
∣∣ẑ∣∣|u|t+ ∣∣L̂1

∣∣∣∣Û1

∣∣]+O(ε20)

≤ 2nε0

{[
|α| |u|t
|v| |B|

]
+

[
1 0∣∣ẑ∣∣ ∣∣L̂1

∣∣][|α| |u|t0
∣∣Û1

∣∣]}+O(ε20) .

Next we would like to derive a a priori estimate on E; and for this purpose we need to estimate∣∣L̂∣∣ and
∣∣Û ∣∣. To this end, we consider the L∞-norm and have:

||E||∞≤ 2nε0(||A||∞+
∣∣∣∣L̂∣∣∣∣∞∣∣∣∣Û ∣∣∣∣∞)+O(ε20) .

At the moment, let us assume l= maxi,j

∣∣l̂ij∣∣ and define a growth factor ρ by:

ρ= max
i,j,k

∣∣â(k)ij

∣∣
||A||∞

. (4.13)

10

Then we have the estimates: ∣∣∣∣L̂∣∣∣∣∞≤nl , ∣∣∣∣Û ∣∣∣∣∞≤nρ||A||∞ ;

these leads to the following estimate:

||E||∞≤ 2n(n2lρ+1)ε0||A||∞+O(ε20) . (4.14)

Remark 3. Before going into improving (4.14), we’d like to motivate why we estimate L̂ and Û
differently. The major reason is that we have kept the diagonal elements of L to be 1; and it is easy
to verify that if A is replaced by βA for some scalar β, L will remain the same whereas U becomes
βU . This is reflected in the previous estimates: the norm of A only appears in the estimate for Û .

There is at least one drawback of (4.14): the number l cannot be bounded by ||A||∞. However,
this issue is easily fixed if we allow row pivoting. Noticing that row exchanges do not affect the
build up of roundoff errors, we can employ the pivoting of Section 2 and obtain l= 1. In this case
(4.14) is improved as:

||E||∞≤ 2n(n2ρ+1)ε0||A||∞+O(ε20) . (4.15)

Finally, the growth factor ρ is also kind of annoying. However, it is fairly difficult to improve the
estimate further. The main reason is that ρ is somehow affected by the conditioning of the matrix
A (note that

∣∣∣∣A−1∣∣∣∣∞ is absent from previous estimates) and one typically expects ρ to be very
large for ill-conditioned systems. Nevertheless, for many practical problems people find out that ρ
almost remains constant as the size (n) of the problem grows.

5 Block matrices and sparse systems

In the last section we briefly discuss two related topics with the LU decomposition. Firstly, the
Gaussian elimination process can be extended easily to block matrices. Taking the 2×2 matrix as
an example, the LU decomposition is given by:

A=

[
a11 a12
a21 a22

]
=

[
1 0

a12a
−1
11 1

][
a11 a21
0 a22−a12a−111 a21

]
,

if a11 6= 0. Now let us suppose that A11, A12, A21, and A22 are m×m, m×n, n×m, and n×
n matrices, respectively; and A11 is invertible. Then we can construct the following block LU
decomposition similar to the previous example:

A=

[
A11 A12

A21 A22

]
=

[
Im×m 0

A12A
−1
11 In×n

][
A11 A21

0 A22−A12A
−1
11 A21

]
;

note that in the block case, the order of the matrix-multiplications cannot be changed. The block-
version of the factorization is very useful, for example, in discretizing system of partial differential
equations.

The second topic is on sparse matrices, i.e., matrices with the majority of its entries being zero.
Such matrices frequently appear, again, in the numerical discretization of differential equations.
Because it is generally a waste of storage if we allocate a full two-dimensional array to store a

11

sparse matrix, a common practice is to only store the information of the non-zero elements. For
example, let A= [aij] be a sparse matrix then in a compressed sparse row storage the following
information1 are stored: For each i such that there exists at least one non-zero aij , we store the
array: {(j,aij) : aij 6= 0} . With such a format, row manipulations are fairly simple but column
operations are much more difficult. Hence, complete pivoting is rarely employed for such matrices;
whereas row pivoting can be efficiently implemented.

Another issue with the sparse matrix is that A−1 is generally not sparse. To this end, people
have been choosing to ignore any elements of A−1 during the Gaussian elimination process, at the
location where aij = 0. The result is a matrix B, which is clearly different from A−1; but the hope
is that B is reasonably close to A−1 so that BA is close to I. In this case, people use B as a
pre-conditioner to the linear system with matrix A (see the next lectures). Sometimes there are
simply too few non-zeroes in matrix A, and people design algorithms to allow creating new non-zero
locations (called filling in) in constructing B. Generally, the more filling-ins are allowed, the closer
B is to A−1 but the more computational cost is required.

Exercises

Exercise 1. If the purpose is to use the Gaussian elimination to solve the linear system Ax = b
for some non-singular matrix A, we do not have to compute A−1 = U−1L−1 explicitly. Actually,
once A=LU is available, we can first solve for a vector y such that Ly=b, which is known as back
substitution. Then we solve for the solution x by Ux=y. How many floating point operations are
involved in these two solves?

Now we extend the discussion to solving the linear systems with multiple right hand sides.
Particularly, we look for solutions x1,···,xm such that A[x1 x2 ··· xm] = [b1 b2 ··· bm]. Determine
the complexity in leading terms of n and m (you also need to take into account of the computational
cost associated with computing the LU decomposition of A).

Exercise 2. In Section 2, we define a permutation matrix P as the product of a chain of simple
matrices that are specified by (2.1). Here, we provide a more straightforward definition of a per-
mutation matrix P = [pij] as any matrix that has exact 1 one and n−1 zeroes in each row and in
each column; here n×n is the dimension of the matrix P . Show that if P is a permutation matrix,
then it is invertible and its inverse is given by P t.

Exercise 3. Show (4.11). Next, using this estimate to show that for the same matrices A and B:

||fl(AB)−AB||p≤nε0||A||p||B||p+O(ε20) . (5.1)

for p= 1 and p=∞.

References

[1] W. S. Ericksen. Inverse pairs of matrices with integer elements. SIAM J. Numer. Anal.,
17(3):474–477, 1980.

1In a equivalent sense.

12

	The Gaussian elimination
	Analysis of the LU decomposition and pivoting
	The Cholesky decomposition
	Roundoff error analysis
	Block matrices and sparse systems

