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1 Stationary Iterative Methods

The Gaussian elimination (or in general most direct methods) requires O(n3) computational cost,
which is not acceptable when n is large. For example, let us consider the direct numerical simulation
of the Navier-Stokes equation on a unit cube in 3D; we discretize the domain with N3 cubes and
compute the solutions up to t =7. The Navier-Stokes equation has five variables at each node,
hence the solution vector is u € R*™’. When an implicit /explicit (IMEX) method is used for the
time-integration, the time step size scales with 1/N and the total number of time steps is O(NV).
For each time step, there is a nonlinear equation to solve:

Fu"h) =g(u"),

to update the solution from one time step (u™) to the next (u"*!). Let K be the average number
of iterations in the Newton method to solve this nonlinear system, in total we need to solve a linear
system O(K N) times, and each such linear system is of the size 5N3 x 5N3. If a direct method is
used for the linear solves, the total computational cost is:

O((5N?®)*)x O(KN)=0O(KN'?),

which is prohibitive even for moderate value of N.

The target of stationary iterative methodsE] is to reduce the computational cost with linear solves
to magnitudes smaller than O(n3). Particularly in solving Az = b, let us write A= M + (A — M)
for some matrix M and the linear system as:

Mz =—(A—M)z+b. (1.1)

In an iterative method, we start with an initial guess g and try to improve the result solving for
LTk+1, k:07 ]-7

Mz =—(A—M)x,+b, orequivalently @1 =—-M Y(A—M)x,+M 'b. (1.2)

Let’s look at the last equation, clearly a requirement for the iterative method to make sense is that
the linear system associated with M should be easy to solve in the sense that the cost is no more
than O(n?). Two such choices are diagonal matrices (~ O(n)) and triangular matrices (~ O(n?)).
Next, we also want to make sure that if there exists a solution «, then xp — x as k — +o0o. Finally,
providing that ; — x, we hope ||z} — || to be reasonably small for only a few number of iterations.
These are the questions we’d like to answer for any iterative method in this lecture.

1Or simply “iterative methods” in this section.



Let A be non-singular and x solves Ax = b, we first look at the convergence. Define e =x, —
as the error vector in the k-th iteration, then:

Mepsr = M(zpi1 — ) = [~ (A~ M)zj+b] — [~ (A~ M)z+b|=—(A— M)ey,

or equivalently:
erp1=Gep, G=—M"YA-M). (1.3)

The growth matrix G remains the same for all iterations (hence the name “stationary iterative
methods” ), thus we obtain an estimate on the error e:

EkZGkEO = HEkHSHGkHHE()H (1.4)

Thus we have g, — 0 for any & if G¥ —0 when k— 0o, for which a sufficient and necessary condition
is given by Theorem

Remark 1. Strictly speaking, we do not need G¥ — 0 to deduce €, if we can choose € carefully.
In an extreme case if €q is in the null space of some G*0 (which happens with ko =1 in the foolish
case when M = A), the error becomes zero after ky iterations.

Theorem 1.1. G¥ — 0 as k — oo if and only if p(G) < 1, where the spectral radius p(G) is the
mazximum absolute value of all the eigenvalues of G.

Proof. We consider the Jordan canonical form G=QJQ ™!, where Q is invertible and .J is given by:
Ji Y

J= _ . = K =1,m (1.5)

nxn l nyXng

Here Aq,---,\;, are the eigenvalues of G, which may not be different from each other; and n;+---+
N, =N
To this end G¥=Q.J*Q~! and we just need to show J* —0 if and only if p(G) <1 or equivalently

M| <1 for all . Because J* =diag(JF, J5, -, JF), we only need to show JF— 0 if and only if
Ar| < 1. The last point is straightforward as:
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and the fact that each entry converges to zero as k — oo. O

In fact, if G=—M~'(A— M) has spectral radius smaller than 1, we can drop the assumption
that A is non-singular (it remains true, though), as stated by the next theorem.

Theorem 1.2. If p(G) <1, then A is invertible.



Proof. Because A= M (I—G), we just need to show that [ —G is invertible for the first part. Indeed,
if (I—G)x =0 for some vector & € R, then

z=Ilz=Gr=G*x=--=G"z—0

by Theorem hence the null space of I — G contains only the zero vector and I — G is invertible.
O

The condition of the preceding theorem is in general very difficult to check; and a more conve-
nient one is based on the inequality | ‘Gk{ | <||G] ¥ Hence a necessary condition is given by ||G||<1
for some induced matrix norm.

2 Jacobi Method

A simplest iterative method is given by choosing M as the diagonal part of A, this is called the
Jacobi method. Let A=L+ D+U, where L, D, and U are the lower-tridiagonal part, diagonal part,
and upper-tridiagonal part, respectively (not to be confused with the LU or LDU decomposition!).
Then in the Jacobi method, M =D and reduces to:

xp1=—D N L+U)xy+D'b. (2.1)

The growth matrix G=—D"1(L+U) is:

1 n
o 0 a2 - amp e
G:_ a2z . CL.2]_ O a?n __ a?g 0 . a?g ) (22)
If the diagonal elements of A are sufficiently large, say:
|aii| > Jag|, Vi=1,2, n, (2.3)

JFi

then we have ||G||,, < 1. By the argument at the end of Section [I, we see that the Jacobi method
converges if A is diagonally dominant, i.e., if A satisfies .
actually provides a way to estimate the number of iterations needed in order to achieve
certain accuracy. Let:
Zj;ﬁi‘alj ‘

i

<1, (2.4)

Pjac = Max
i

then by lex|| SkaaCHEOHoo'

To see an example of diagonal-dominate linear systems, we consider the implicit method to
solve the system of ordinary differential equations:

dx

E—f(wf



Let @, and x,,+1 be the solutions at t,, and t,,+1 = t,, + At,,, respectively; then we update the
solution from x,, to ,,+1 by:

LTm+1 — Lm :f( m)+8f(mm)

At Toa (T,

which involves the linear system with A,, =1+ At,, of g::m). Thus we can always find a diagonal-

dominate matrix A,, by choosing a small At,,.

3 Gauss-Seidel Method

The Jacobi method can be written component-by-component as:

fori=1.2,-,n: (3.1)

1
Tt = — | =D _aijn;+b
Qg Y
JF#i

Here we denote xj = [z};]. One argument about the Jacobi method is that we're not using the
most updated information in the solution, i.e. it is always the components of x; that appear on
the right hand side of the updating formula.

A modification that always use the most recent data and saves some storage is the following;:

fori=1,2,,n: (3.2)

1
1= | =Y Qi1 — ) ia; b
Qi ! .
1<t J>1

This algorithm is known as the Gauss-Seidel method; and it is equivalent to the choice M =D+ L:
Tr41 :—(D+L)_1(ka—b) . (3.3)
The Gauss-Seidel method also guarantees convergence for arbitrary initial data for diagonally dom-
inant matrices. Particularly, similar to (2.4)) we can derive a decay rate:
s = Max Zj>i‘aij|
gs = 11 :
i |aiil _Zj<i‘aij|

(3.4)

We prove in the exercises H—(D—FL)*IUHOO < pgs and hence deduce that HskHoo < p’g“SHEOHOO.
Comparing and we see for the same diagonally dominant matrix A, pgs < pjac; hence the
Gauss-Seidel method in general converges faster than the Jacobi method, at the cost of solving a
triangular system instead of a diagonal one at each iteration.

Because solving the linear system L+ D involves forward substitution, the method described
before is also called the forward Gauss-Seidel method. Similarly, we can choose M = D+ U and
establishing similar convergent result for diagonally dominant matrices; and this method is called
the backward Gauss-Seidel method.

Finally, we show the convergence of the forward Gauss-Seidel method for another type of very
important matrices, namely the symmetric positive-definite ones. This is a direct result of the
following theorem and Theorem



Theorem 3.1. Let A be symmetric positive-definite, then G = —(L+ D)~ L! satisfies p(G) < 1.
Proof. Clearly D has all its diagonal entries positive and it is non-singular; thus we may write:
—G=[D2(D2LD 2 +I)D:| 'L'=D 2(L+1)"'['Dz, where L=D 2LD 2.
Let A € C be any eigenvalue of —G, since:
(L+I)"'L'=-D:GD 2,

\ is also an eigenvalue of —G= (ﬂ—i—] )*lf/t. Choose zeC™ as a unit eigenvector of —G corresponding
to A, i.e.

L'z=\NL+1)z.

Define A=L+I+L'=D"3(L+D+L")D 2 =D 3AD"7, then 4 is also symmetric positive-
definite. Let us define o = z*Lz and denote o = a+1ib, a,b € R; we also denote z = x + iy where
x,y € R”. Then we have:

a=ao"=z"L'z=X\z"(L+1)z=\1+a),

where we used the assumption z*z=1.
Next, we compute z*Az:

ZAz=2"(L+T+LYz=(1+Nz"(L+Dz=(1+N)(14+a)=1+a+a=1+2a.
However, by the positive definiteness of A, we have:
Z*Az= (' —iy)A(x+iy) =z Az +y'Ay >0 = 142a>0.

Thus by A=a/(1+«) we have:

—ib 24 p?
Y P R <1.
1+a+ib 1+2a+a?+b?
The proof is completed by noting that p(G) = p(—G) and the choice of A is arbitrary. O

4 SOR Method

The successive over-relaxation method (SOR) takes a “linear combination” of the Jacobi method
and the Gauss-Seidel method to provide more control over the convergence rate. Particularly, we
choose M =M, = %D—i—L for some w >0 — Letting w = co the method tens to the Jacobi method
and setting w =1 the method corresponds to the forward Gauss-Seidel.

For the SOR with w >0, we have:

1 “lrw-1
G=G,=—(-D+L) (“=—D+U).
w w

It can be shown that if A is symmetric positive-definite and 0 < w < 2, then the SOR method
converges. The proof is similar to that of Theorem and the details are left as an exercise.



Note that due to a theorem of by Kahan [I], p(G) > |w—1]; hence a necessary condition for
the SOR method to converge is also 0 < w < 2.

A major purpose of the SOR method is that it allows people to tune w in order to minimize p(G,)
for some special matrices. For example, if A is symmetric positive-definite and also tridiagonal,
then p(Ggs) = p(Gjac)? < 1 and the optimal choice for SOR is:

1+ V 1 _p(Gjac)2

In this case, p(G,) =w—1, which is optimal by the Kahan theorem.

5 Related Topics: Acceleration and Preconditioners

The acceleration technique tries to improve the convergence of an existing iterative method. Sup-
pose we obtained x1, x5, ---, @) from the standard iterative method, then the plan is to compute
a linear combination:

k
yp=> vi(k)zi, (5.1)
=0

so that y,, represents a better approximation to the exact solution. Note that a natural condition on
the coefficients is Zfzoyi(k:) =1, so that if all iterates are exact, so is y;. If we define a polynomial:

() = vo (k) + v (k)x+ -+ v (k)a* (5.2)
and extend its definition to matrices naturally, we have:

yr —x=pr(G)eo,

where x is the exact solution. Hence the target is to minimize ||p(G)|| in a certain norm.

The Chebyshev semi-iterative method for symmetric matrices makes use of the fact that the
eigenvalues of pi(G) are pg(A), where X is any eigenvalue of G. Knowing that any eigenvalue of G
lies between —1 and 1, the method utilizes the Chebyshev polynomials ¢ (x) defined recursively by
co(z) =1, c1(x) =z, and cxy1(x) =2xck(x) — cx—1(x), and define:

1 Z — Amin

pk(fﬂ)zm%(—lﬂLQ )5

)\max - )\min
where = —1 —G—Zﬁ, —1 < Amin < Amax < 1 are the smallest and largest eigenvalues of G,
respectively.

There are two benefits of using the Chebyshev polynomials. First, cx(x) satisfies |cx(x)| <1 on
[—1,1] and it grow rapidly off this interval; thus the following estimate expects to be small:

1
lyi —lly < -——Ileoll, -
27 Jen(m)]

Secondly, the recursive relation in the Chebyshev polynomials enables the following algorithm that
completely removes the need to compute the iterates xy but calculate y, directly:

Y1 = Wh1(Yp —Yp1 +72k) FYr_1
Mz = b_Ayk: )



2 2—Amin—Amax _Ck (,U,)

Whel"e P)/ - 2\ )\max*)\min Ck:+1(/1‘) )

y Wk+1 =

minf)\max

Another use of the iterative methods is to construct preconditioners. A (left) preconditioner P
modifies the original equation Ax =b to:

PAz="Pb. (5.3)

In general, the preconditioner depends highly on the problems to be solved, such as the low-Mach
preconditioner for low-speed aerodynamic problems.

From a pure linear algebra point of view, though, the iterative method provides a class of
preconditioners given by P = M~!. In this case, we still need to solve a non-trivial system with
M~1A, but the hope is that M~ A will be better conditioned than A itself. Corresponding to the
previous methods, we have the following preconditioners:

Poc=D"', Py=(L+D)", Poy=(L+w D) .

Exercises

Exercise 1. Use mathematical induction to show @) in the case n;=3.

Exercise 2. Let A be diagonally dominant and we want to complete the proof that the Gauss-
Seidel method converges. Particularly let G=—(L+D)™'U, show that ||G||,, < pgs, which is given

by (3.4).
Hint: Use the definition of induced matriz norms, we just need to show that for all ||x|| =1,
there is ||y|| ., < pgs, where y=Gx. And for this purpose, use Dy=—Ly—Ux.

Exercise 3. Show that if A is symmetric, diagonally dominant, and all its diagonal elements are
positive, then A is positive definite.

Hint: Show that ' Ax >0 and derive the condition for the equality to hold. For this purpose, use
the inequality a;;z;y; > — <% ‘aij ‘:c? +%|aﬁ‘x§> .

Exercise 4. Prove that if A is symmetric positive definite, then the SOR method with 0 < w < 2
converges.

Exercise 5. Let us consider the SOR method with w >0, show that:
|detGy| =]1—w]|™.

Then deduce that p(Gy,) > |1 —w|, the Kahan theorem.
Hint: The determinant of a matriz A is the product of all the eigenvalues of A.
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