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1 Stationary Iterative Methods

The Gaussian elimination (or in general most direct methods) requires O(n3) computational cost,
which is not acceptable when n is large. For example, let us consider the direct numerical simulation
of the Navier-Stokes equation on a unit cube in 3D; we discretize the domain with N3 cubes and
compute the solutions up to t= T . The Navier-Stokes equation has five variables at each node,
hence the solution vector is u∈R5N3

. When an implicit/explicit (IMEX) method is used for the
time-integration, the time step size scales with 1/N and the total number of time steps is O(N).
For each time step, there is a nonlinear equation to solve:

f(un+1) = g(un) ,

to update the solution from one time step (un) to the next (un+1). Let K be the average number
of iterations in the Newton method to solve this nonlinear system, in total we need to solve a linear
system O(KN) times, and each such linear system is of the size 5N3×5N3. If a direct method is
used for the linear solves, the total computational cost is:

O((5N3)3)×O(KN) =O(KN10) ,

which is prohibitive even for moderate value of N .

The target of stationary iterative methods1 is to reduce the computational cost with linear solves
to magnitudes smaller than O(n3). Particularly in solving Ax= b, let us write A=M +(A−M)
for some matrix M and the linear system as:

Mx=−(A−M)x+b . (1.1)

In an iterative method, we start with an initial guess x0 and try to improve the result solving for
xk+1 , k= 0 , 1 , ···:

Mxk+1 =−(A−M)xk+b , or equivalently xk+1 =−M−1(A−M)xk+M−1b . (1.2)

Let’s look at the last equation, clearly a requirement for the iterative method to make sense is that
the linear system associated with M should be easy to solve in the sense that the cost is no more
than O(n2). Two such choices are diagonal matrices (∼O(n)) and triangular matrices (∼O(n2)).
Next, we also want to make sure that if there exists a solution x, then xk→x as k→+∞. Finally,
providing that xk→x, we hope ||xk−x|| to be reasonably small for only a few number of iterations.
These are the questions we’d like to answer for any iterative method in this lecture.

1Or simply “iterative methods” in this section.
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Let A be non-singular and x solves Ax=b, we first look at the convergence. Define εk =xk−x
as the error vector in the k-th iteration, then:

Mεk+1 =M(xk+1−x) = [−(A−M)xk+b]− [−(A−M)x+b] =−(A−M)εk ,

or equivalently:
εk+1 =Gεk , G=−M−1(A−M) . (1.3)

The growth matrix G remains the same for all iterations (hence the name “stationary iterative
methods”), thus we obtain an estimate on the error εk:

εk =Gkε0 =⇒
∣∣∣∣εk∣∣∣∣≤ ∣∣∣∣Gk∣∣∣∣||ε0|| . (1.4)

Thus we have εk→0 for any ε0 if Gk→0 when k→∞, for which a sufficient and necessary condition
is given by Theorem 1.1.

Remark 1. Strictly speaking, we do not need Gk→ 0 to deduce εk if we can choose ε0 carefully.
In an extreme case if ε0 is in the null space of some Gk0 (which happens with k0 = 1 in the foolish
case when M =A), the error becomes zero after k0 iterations.

Theorem 1.1. Gk→ 0 as k→∞ if and only if ρ(G)< 1, where the spectral radius ρ(G) is the
maximum absolute value of all the eigenvalues of G.

Proof. We consider the Jordan canonical form G=QJQ−1, where Q is invertible and J is given by:

J =


J1

J2
. . .

Jm


n×n

, Jl =


λl 1

λl
. . .
. . . 1

λl


nl×nl

. l= 1,···,m (1.5)

Here λ1,···,λm are the eigenvalues of G, which may not be different from each other; and n1+ ···+
nm =n.

To this end Gk=QJkQ−1 and we just need to show Jk→0 if and only if ρ(G)<1 or equivalently∣∣λl∣∣< 1 for all l. Because Jk = diag(Jk1 , J
k
2 , ··· , Jkm), we only need to show Jkl → 0 if and only if∣∣λl∣∣< 1. The last point is straightforward as:

Jkl =



(
k
k

)
λkl

(
k
k−1
)
λk−1l

(
k
k−2
)
λk−2l ···

(
k

k−nl+1

)
λk−nl+1
l(

k
k

)
λkl

(
k
k−1
)
λk−1l ···

(
k

k−nl

)
λk−nl
l(

k
k

)
λkl ···

(
k

k−nl−1
)
λk−nl−1
l

. . .
...(

k
k

)
λkl


nl×nl

, (1.6)

and the fact that each entry converges to zero as k→∞.

In fact, if G=−M−1(A−M) has spectral radius smaller than 1, we can drop the assumption
that A is non-singular (it remains true, though), as stated by the next theorem.

Theorem 1.2. If ρ(G)< 1, then A is invertible.
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Proof. Because A=M(I−G), we just need to show that I−G is invertible for the first part. Indeed,
if (I−G)x= 0 for some vector x∈Rn, then

x= Ix=Gx=G2x= ···=Gkx→ 0

by Theorem 1.1; hence the null space of I−G contains only the zero vector and I−G is invertible.

The condition of the preceding theorem is in general very difficult to check; and a more conve-
nient one is based on the inequality

∣∣∣∣Gk∣∣∣∣≤||G||k. Hence a necessary condition is given by ||G||<1
for some induced matrix norm.

2 Jacobi Method

A simplest iterative method is given by choosing M as the diagonal part of A, this is called the
Jacobi method. Let A=L+D+U , where L, D, and U are the lower-tridiagonal part, diagonal part,
and upper-tridiagonal part, respectively (not to be confused with the LU or LDU decomposition!).
Then in the Jacobi method, M =D and (1.2) reduces to:

xk+1 =−D−1(L+U)xk+D−1b . (2.1)

The growth matrix G=−D−1(L+U) is:

G=−


1
a11

1
a22

. . .
1
ann




0 a12 ··· a1n
a21 0 ··· a2n
...

...
. . .

...
an1 an2 ··· 0

=−


0 a12

a11
··· a1n

a11
a21
a22

0 ··· a2n
a22

...
...

. . .
...

an1
ann

an2
ann

··· 0

 . (2.2)

If the diagonal elements of A are sufficiently large, say:∣∣aii∣∣>∑
j 6=i

∣∣aij∣∣ , ∀i= 1 , 2 , ··· , n , (2.3)

then we have ||G||∞< 1. By the argument at the end of Section 1, we see that the Jacobi method
converges if A is diagonally dominant, i.e., if A satisfies (2.3).

(2.3) actually provides a way to estimate the number of iterations needed in order to achieve
certain accuracy. Let:

ρjac = max
i

∑
j 6=i
∣∣aij∣∣∣∣aii∣∣ < 1 , (2.4)

then by (1.4)
∣∣∣∣εk∣∣∣∣∞≤ ρkjac∣∣∣∣ε0∣∣∣∣∞.

To see an example of diagonal-dominate linear systems, we consider the implicit method to
solve the system of ordinary differential equations:

dx

dt
=f(x) .
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Let xm and xm+1 be the solutions at tm and tm+1 = tm+∆tm, respectively; then we update the
solution from xm to xm+1 by:

xm+1−xm
∆tm

=f(xm)+
∂f(xm)

∂x
(xm+1−xm) ,

which involves the linear system with Am = I+∆tm
∂f(xm)
∂x . Thus we can always find a diagonal-

dominate matrix Am by choosing a small ∆tm.

3 Gauss-Seidel Method

The Jacobi method can be written component-by-component as:

for i= 1 ,2 ,··· , n : (3.1)

xk+1;i =
1

aii

−∑
j 6=i

aijxk;j +bj

 .

Here we denote xk = [xk;i]. One argument about the Jacobi method is that we’re not using the
most updated information in the solution, i.e. it is always the components of xk that appear on
the right hand side of the updating formula.

A modification that always use the most recent data and saves some storage is the following:

for i= 1 ,2 ,··· , n : (3.2)

xk+1;i =
1

aii

−∑
j<i

aijxk+1;j−
∑
j>i

aijxk;j +bj

 .

This algorithm is known as the Gauss-Seidel method; and it is equivalent to the choice M =D+L:

xk+1 =−(D+L)−1(Uxk−b) . (3.3)

The Gauss-Seidel method also guarantees convergence for arbitrary initial data for diagonally dom-
inant matrices. Particularly, similar to (2.4) we can derive a decay rate:

ρgs = max
i

∑
j>i

∣∣aij∣∣∣∣aii∣∣−∑j<i

∣∣aij∣∣ . (3.4)

We prove in the exercises
∣∣∣∣−(D+L)−1U

∣∣∣∣
∞ ≤ ρgs and hence deduce that

∣∣∣∣εk∣∣∣∣∞ ≤ ρkgs∣∣∣∣ε0∣∣∣∣∞.
Comparing (2.4) and (3.4) we see for the same diagonally dominant matrix A, ρgs≤ρjac; hence the
Gauss-Seidel method in general converges faster than the Jacobi method, at the cost of solving a
triangular system instead of a diagonal one at each iteration.

Because solving the linear system L+D involves forward substitution, the method described
before is also called the forward Gauss-Seidel method. Similarly, we can choose M =D+U and
establishing similar convergent result for diagonally dominant matrices; and this method is called
the backward Gauss-Seidel method.

Finally, we show the convergence of the forward Gauss-Seidel method for another type of very
important matrices, namely the symmetric positive-definite ones. This is a direct result of the
following theorem and Theorem 1.1.

4



Theorem 3.1. Let A be symmetric positive-definite, then G=−(L+D)−1Lt satisfies ρ(G)< 1.

Proof. Clearly D has all its diagonal entries positive and it is non-singular; thus we may write:

−G= [D
1
2 (D−

1
2LD−

1
2 +I)D

1
2 ]−1Lt =D−

1
2 (L̃+I)−1L̃tD

1
2 , where L̃=D−

1
2LD−

1
2 .

Let λ∈C be any eigenvalue of −G, since:

(L̃+I)−1L̃t =−D
1
2GD−

1
2 ,

λ is also an eigenvalue of −G̃=(L̃+I)−1L̃t. Choose z∈Cn as a unit eigenvector of −G̃ corresponding
to λ, i.e.

L̃tz =λ(L̃+I)z .

Define Ã= L̃+I+ L̃t =D−
1
2 (L+D+Lt)D−

1
2 =D−

1
2AD−

1
2 , then Ã is also symmetric positive-

definite. Let us define α= z∗L̃z and denote α= a+ ib, a,b ∈R; we also denote z = x+ iy where
x,y ∈Rn. Then we have:

α=α∗= z∗L̃tz =λz∗(L̃+I)z =λ(1+α) ,

where we used the assumption z∗z = 1.
Next, we compute z∗Ãz:

z∗Ãz = z∗(L̃+I+ L̃t)z = (1+λ)z∗(L̃+I)z = (1+λ)(1+α) = 1+α+α= 1+2a .

However, by the positive definiteness of Ã, we have:

z∗Ãz = (xt− iyt)Ã(x+ iy) =xtÃx+ytÃy> 0 ⇒ 1+2a> 0 .

Thus by λ=α/(1+α) we have:

|λ|2 =

∣∣∣∣ a− ib
1+a+ ib

∣∣∣∣2 =
a2+b2

1+2a+a2+b2
< 1 .

The proof is completed by noting that ρ(G) = ρ(−G) and the choice of λ is arbitrary.

4 SOR Method

The successive over-relaxation method (SOR) takes a “linear combination” of the Jacobi method
and the Gauss-Seidel method to provide more control over the convergence rate. Particularly, we
choose M =Mω = 1

ωD+L for some ω > 0 – Letting ω=∞ the method tens to the Jacobi method
and setting ω= 1 the method corresponds to the forward Gauss-Seidel.

For the SOR with ω> 0, we have:

G=Gω =−
(

1

ω
D+L

)−1(ω−1

ω
D+U

)
.

It can be shown that if A is symmetric positive-definite and 0 < ω < 2, then the SOR method
converges. The proof is similar to that of Theorem 3.1, and the details are left as an exercise.
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Note that due to a theorem of by Kahan [1], ρ(Gω)≥ |ω−1|; hence a necessary condition for
the SOR method to converge is also 0<ω< 2.

A major purpose of the SOR method is that it allows people to tune ω in order to minimize ρ(Gω)
for some special matrices. For example, if A is symmetric positive-definite and also tridiagonal,
then ρ(Ggs) = ρ(Gjac)

2< 1 and the optimal choice for SOR is:

ω=
2

1+
√

1−ρ(Gjac)2
.

In this case, ρ(Gω) =ω−1, which is optimal by the Kahan theorem.

5 Related Topics: Acceleration and Preconditioners

The acceleration technique tries to improve the convergence of an existing iterative method. Sup-
pose we obtained x1 , x2 , ··· , xk from the standard iterative method, then the plan is to compute
a linear combination:

yk =
k∑
i=0

νi(k)xi , (5.1)

so that yk represents a better approximation to the exact solution. Note that a natural condition on
the coefficients is

∑k
i=0νi(k)=1, so that if all iterates are exact, so is yk. If we define a polynomial:

pk(x) = ν0(k)+ν1(k)x+ ···+νk(k)xk (5.2)

and extend its definition to matrices naturally, we have:

yk−x= pk(G)ε0 ,

where x is the exact solution. Hence the target is to minimize ||pk(G)|| in a certain norm.
The Chebyshev semi-iterative method for symmetric matrices makes use of the fact that the

eigenvalues of pk(G) are pk(λ), where λ is any eigenvalue of G. Knowing that any eigenvalue of G
lies between −1 and 1, the method utilizes the Chebyshev polynomials ck(x) defined recursively by
c0(x) = 1, c1(x) =x, and ck+1(x) = 2xck(x)−ck−1(x), and define:

pk(x) =
1

ck(µ)
ck(−1+2

x−λmin

λmax−λmin
) ,

where µ=−1 + 2 1−λmin
λmax−λmin

, −1< λmin < λmax < 1 are the smallest and largest eigenvalues of G,
respectively.

There are two benefits of using the Chebyshev polynomials. First, ck(x) satisfies |ck(x)| ≤ 1 on
[−1,1] and it grow rapidly off this interval; thus the following estimate expects to be small:

||yk−x||2≤
1

|ck(µ)|
||ε0||2 .

Secondly, the recursive relation in the Chebyshev polynomials enables the following algorithm that
completely removes the need to compute the iterates xk but calculate yk directly:

yk+1 =ωk+1(yk−yk−1+γzk)+yk−1 ,

Mzk = b−Ayk ,
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where γ= 2
2−λmin−λmax

, ωk+1 = 22−λmin−λmax
λmax−λmin

ck(µ)
ck+1(µ)

.

Another use of the iterative methods is to construct preconditioners. A (left) preconditioner P
modifies the original equation Ax= b to:

PAx=Pb . (5.3)

In general, the preconditioner depends highly on the problems to be solved, such as the low-Mach
preconditioner for low-speed aerodynamic problems.

From a pure linear algebra point of view, though, the iterative method provides a class of
preconditioners given by P =M−1. In this case, we still need to solve a non-trivial system with
M−1A, but the hope is that M−1A will be better conditioned than A itself. Corresponding to the
previous methods, we have the following preconditioners:

Pjac =D−1 , Pgs = (L+D)−1 , Psor = (L+ω−1D)−1 .

Exercises

Exercise 1. Use mathematical induction to show (1.6) in the case nl = 3.

Exercise 2. Let A be diagonally dominant and we want to complete the proof that the Gauss-
Seidel method converges. Particularly let G=−(L+D)−1U , show that ||G||∞≤ ρgs, which is given
by (3.4).
Hint: Use the definition of induced matrix norms, we just need to show that for all ||x||∞ = 1,
there is ||y||∞≤ ρgs, where y =Gx. And for this purpose, use Dy =−Ly−Ux.

Exercise 3. Show that if A is symmetric, diagonally dominant, and all its diagonal elements are
positive, then A is positive definite.
Hint: Show that xtAx≥ 0 and derive the condition for the equality to hold. For this purpose, use

the inequality aijxiyj ≥−
(
1
2

∣∣aij∣∣x2i + 1
2

∣∣aji∣∣x2j).

Exercise 4. Prove that if A is symmetric positive definite, then the SOR method with 0<ω < 2
converges.

Exercise 5. Let us consider the SOR method with ω> 0, show that:

|detGω|= |1−ω|n .

Then deduce that ρ(Gω)≥ |1−ω|, the Kahan theorem.
Hint: The determinant of a matrix A is the product of all the eigenvalues of A.

References

[1] William Morton Kahan. Gauss-Seidel methods of solving large systems of linear equations. PhD
thesis, University of Toronto, 1958.

7


	Stationary Iterative Methods
	Jacobi Method
	Gauss-Seidel Method
	SOR Method
	Related Topics: Acceleration and Preconditioners

