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1 A Starting Point: The Steepest Descent Method

If A∈Rn×n is symmetric positive-definite, solving:

Ax= b , (1.1)

is equivalent to minimizing the function:

φ(x) =
1

2
xtAx−xtb . (1.2)

Thus we can apply any optimization algorithm to solve this minimization problem and obtain a
method for solving (1.1).

At the point, let us consider the steepest descent method and select any initial guess x0. With
xk available we try to find the direction along which φ(x) decreases most rapidly starting from xk

and compute the next point xk+1 by minimizing φ(x) in this direction. By Taylor series expansion

φ(xk +αd) =φ(xk)+α∇φ(xk)td+O(||d||2) ;

thus the direction we’re looking for is given by −∇φ(xk) = rk, the residual at the k-th iteration:

rk = b−Axk . (1.3)

If rk 6=0, we try to find the next solution point xk+1 by minimizing φ(xk+αrk) for all α∈R (called
the exact line search). Note that φ(xk +αrk) is a second-degree polynomial in α:

φ(xk +αrk) =
1

2
(rtkArk)α2+(rtkAxk−rtkb)α+φ(xk) ,

the solution to the exact line search is:

αk =
rtkrk
rtkArk

;

the denominator is never zero due to the positive-definiteness of A and rk 6=0, thus we can compute
xk+1 as well as rk+1. This leads to the following (idealized) algorithm:

r0 = b−Ax0 , k= 0 ; (1.4)

while rk 6= 0 :

αk = (rtkrk)/(rtkArk) ;

xk+1 =xk +αkrk ;

rk+1 = b−Axk+1 ;

k= k+1 ;

end

x=xk .
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A theoretical bound on the convergence of the steepest descent method is given by:(
φ(xk+1)+

1

2
btA−1b

)
≤
(

1− λmin(A)

λmax(A)

)(
φ(xk)+

1

2
btA−1b

)
, (1.5)

where −(btA−1b)/2 is the theoretical minimum of φ(x), and λmin(A) and λmax(A) are the smallest
and largest eigenvalues of A. Thus the global convergence is guaranteed due to the fact that
0<λmin(A)<λmax(A).

2 The Projection Method

An issue with the steepest descend method is that the decay rate of (1.5) can be extremely close
to 1 in many practical applications, which means a large number of iterations is needed to achieve
a certain accuracy.

The projection method can be viewed as an extension of the algorithm (1.4) in the following
sense. In every iteration of the steepest descend algorithm, we compute a solution xk+1 in the
one-dimensional affine space xk +span(rk); thus it is also contained in the affine space:

x0+span(r0 , r1 , ··· , rk) ,

which has the dimension no larger than min(n,k+1).

Remark 1. An affine space A⊆ V, where V is a vector space, is not necessarily a vector space
itself, at least in the sense that it does not necessarily contain a zero vector. A formal definition for
the affine space requires that if v1 , v2 ∈A and α∈R, then (1−α)v1 +αv2 ∈A. It is not difficult
to show that let v0 ∈A be arbitrary, then the set:

{v : v+v0 ∈A}

is a linear subspace of V. Denote this linear subspace by S, then we write A = v0 +S. One can
check that S is independent of the particular choice of v0.

Remark 2. Let v1,···,vk∈V, then span(v1 , v1 , ···, vk) is the linear vector subspace that is composed
of all linear combinations of v1,···,vk; its dimension is at most min(k,n).

The idea of the general projection method is to search for a “best” approximation in the affine
space Vk =x0+Kk, where Kk is a linear subspace spanned by k+1 vectors v0 , v1 , ··· , vk:

Kk = span(v0 , v1 , ··· , vk) . (2.1)

In order to define the “best” approximation, a general way is to require that the residual rk is
orthogonal to another linear space Lk spanned by a set of k+1 vectors w0 , w1 , ··· , wk. Note that
if Lk =AKk this requirement is equivalent to the minimization problem:

xk+1 = arg min
x∈x0+Kk

||b−Ax||2 .

Such projection methods thusly involve the following components:

• How to construct the vectors vk and wk.

• How to solve the minimization problem efficiently in the k-th iteration.

A more extensive discussion will be provided in the next lecture on Krylov space methods. For
now let us consider an alternative to define the “best” approximation as finding the minimum of
φ(x) on the affine space x0+Kk.
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3 The Conjugate Gradient Method

Suppose the search spaces Kk are spanned by some linearly-independent vectors p0 , ··· , pk, we
denote Pk∈Rn×(k+1) as Pk=[p0 p1 ··· pk]. Hence we may write xk+1=x0+Pkyk for some coefficient
vector yk ∈Rk+1. For convenience we also write K−1 = ∅ so that x0 minimize φ(x) in the affine
space x0+K−1 = {x0}.

Now let xk and p0,···,pk have already been computed, we consider minimizing φ(x) over the
space x0+Kk and write for now the solution as:

xk+1 =x0+Pk−1y+αpk , (3.1)

for some y∈Rk and α∈R. The hope is that y=yk−1 so that the minimization problem is equivalent
to the line search along the direction pk, an easy sub-problem to solve. To this end we assume (3.1)
and obtain

φ(xk+1) =φ(x0+Pk−1y)+αytP t
k−1Apk +

α2

2
pt
kApk−αpt

kr0 .

If pk is chosen such that P t
k−1Apk =0, i.e., pt

jApk =0 for all j=0,···,k−1, the second term vanishes
and the contribution of y is contained in the first term. An equivalent statement of this condition
is that pk is A-conjugate to the subspace Kk−1.

Assuming this condition is satisfied, we thusly have:

φ(xk+1) =φ(x0+Pk−1y)+
α2

2
pt
kApk−αpt

kr0 ,

where the minimization over (y,α) is decoupled into minimizing over y and over α separately. The
first part leads to y =yk−1 as desired; and the second part leads to:

αk =
pt
kr0

pt
kApk

=
pt
krk

pt
kApk

. (3.2)

Here the second equality comes from:

pt
krk =pt

k(b−A(x0+Pk−1yk−1)) =pt
kr0−(pt

kAPk−1)yk−1 =pt
kr0 ; (3.3)

and one can compute the next iteration as xk+1 =xk +αkpk.

Now the problem reduces to finding pk such that it is A-conjugate to Kk−1. Let us denote this
requirement as pk ∈ (AKk−1)

⊥, where AKk−1 is the linear space obtained by pre-multiplying any
member of Kk−1 by the matrix A and the superscript ⊥ denotes the orthogonal (w.r.t. the usual
Euclidean norm) complement. First, we want to know whenever the current residual rk is non-zero,
the next non-zero search direction pk ∈ (AKk−1)

⊥ so that pt
krk 6= 0 (hence αk 6= 0) can always be

found.
To this end, let us use the method of induction and first assume r0 6= 0. Note that K−1 = ∅

thus (AK−1)⊥=Rn, and we can simply set p0 =r0 6= 0. Now suppose we work up to the point that
rk 6= 0 and want to find a suitable pk. Note that x=A−1b, the exact solution, does not belong to
x0+Kk−1 since rk 6= 0, we have:

A−1b /∈x0+Kk−1 ⇒ r0 = b−Ax0 /∈AKk−1 . (3.4)
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This means that we can find pk ∈ (AKk−1)
⊥ such that pt

kr0 6= 0; and pt
krk 6= 0 follows from the fact

that pk ∈ (AKk−1)
⊥ and a similar argument using (3.3).

From the previous proof, we know that if rk 6= 0 then rk /∈AKk−1
1. Following this observation,

the conjugate gradient method finds pk by removing from rk the latter’s projection onto (AKk−1)
⊥.

That is, we write:

rk = γkpk +zk , zk ∈AKk−1 , pk ∈ (AKk−1)
⊥ and γk 6= 0. (3.5)

More details about this decomposition as well as an explicit formula to compute γkpk and zk from
a basis of AKk−1 is described in Exercise 1.

Because rk−r0=A(x0−xk)∈AKk−1, it is not difficult to see that the orthogonal decomposition
of r0 w.r.t. AKk−1 is given by:

r0 = γkpk +(zk +r0−rk) .

Now let p0 = r0, we can then use induction to show that:

Kk = span(r0 , Ar0 , ··· , Akr0) . (3.6)

Indeed, the choice of p0 indicates K0 = span(r0) and now we assume (3.6) is true for k−1 (k≥ 1),
then we have:

pk =
1

γk
[r0−(zk +r0−rk)]∈ span(r0 , AKk−1) = span(r0 , Ar0 , ··· , Akr0) ,

and (3.6) for the case k follows immediately.
Next let’s take a closer look at rk = b−Axk = b−A(x0 +Pk−1yk−1), where yk−1 minimize

φ(x0+Pk−1y) over all y∈Rk. The solution to this minimization problem is not difficult to compute:

yk−1 = (P t
k−1APk−1)

−1P t
k−1Ar0 .

It is then computed that:
P t
k−1rk =P t

k−1(r0−APk−1yk−1) = 0 ,

or equivalently rk ∈ K⊥k−1. Combining this result and (3.5), we obtain again by induction that
r0 , r1 , , rk are orthogonal to each other (hence are also linearly independent) and:

Kk = span(r0 , r1 , ··· , rk) . (3.7)

There remains an important step of deriving a formula to compute zk efficiently. Let us assume
for now k≥ 2. Note that zk ∈AKk−1, one of whose basis is given by APk−1, hence:

zk =APk−1yk−1 , yk−1 = arg min
y∈Rk
||rk−APk−1y|| .

Let us write y ∈Rk and Pk−1 as

y =

[
w
β

]
, w∈Rk−1 , β ∈R ; Pk−1 =

[
Pk−2 pk−1

]
,

1Otherwise if rk ∈AKk−1, then for all p∈ (AKk−1)
⊥ we must have ptrk =0, contradiction.
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then the vector whose 2-norm is to be minimized is the same as:

rk−APk−1y = rk−APk−2w−βApk−1.

Noticing that:
rk = b−Axk = b−A(xk−1+αk−1pk−1) = rk−1−αk−1Apk−1 ,

we further compute:

rk−APk−1y = rk−APk−2w−
β

αk−1
(rk−1−rk) =

(
1+

β

αk−1

)
rk−APk−2w−

β

αk−1
rk−1 .

Because both APk−2w and rk−1 belongs to Kk−1, using the previous result that rk ∈ K⊥k−1 we
conclude that:

||rk−APk−1y||2 =

(
1+

β

αk−1

)2

||rk||2+

∣∣∣∣∣∣∣∣APk−2w+
β

αk−1
rk−1

∣∣∣∣∣∣∣∣2 .
Let yk−1 have the components wk−1 and βk−1, then wk−1 solves the minimization problem:

−αk−1
βk−1

wk−1 = arg min
w∈Rk−1

||rk−1−APk−2w|| ,

or equivalently:

−αk−1
βk−1

APk−2wk−1 = arg min
z∈AKk−2

||rk−1−z||= zk−1 = rk−1−γk−1pk−1 .

This leads to a formula of zk:

zk =APk−2wk−1+βk−1Apk−1 =−βk−1
αk−1

(rk−1−γk−1pk−1)+βk−1Apk−1 =−βk−1
αk−1

(rk−γk−1pk−1) .

In the view of (3.5), pk is a linear combination of rk and pk−1. This statement is clearly also true
for k < 2.

Remark 3. Strictly speaking, we need to show first that βk−1 6= 0 in the preceding argument. But
this is actually fairly straightforward by an argument of contradiction.

At last, without loss of generality, we can always scale the search direction appropriately so
that:

pk = rk +skpk−1 , (3.8)

where the scalar sk can be evaluated by pre-multiplying both sides of (3.8) by pt
k−1A:

0 =pt
k−1Apk =pt

k−1Ark +skp
t
k−1Apk−1 ,

here the first identity is due to the fact that pk is A-conjugate to Kk−1. Thus:

sk =−
pt
k−1Ark

pt
k−1Apk−1

. (3.9)
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In the end, the detailed algorithm for the conjugate gradient method is given by the following:

r0 = b−Ax0 , k= 0 ; (3.10)

while rk 6= 0 :

if k= 0

p0 = r0 ;

else

sk =−pt
k−1Ark/p

t
k−1Apk−1 ;

pk = rk +skpk−1 ;

end

αk =pt
krk/p

t
kApk ;

xk+1 =xk +αkpk ;

rk+1 = b−Axk+1 ;

k= k+1 ;

end

x=xk .

4 Further Analysis

There are several steps of the algorithm (3.10) that can be improved for computational efficiency. In
particular, there are four matrix-vector multiplications in each iteration, one of which can be re-used
between adjacent loops; hence algorithm (3.10) has in average three matrix-vector multiplications
per iteration. This is the major computational cost with the method.

Now let us derive an equivalent method that only requires one matrix-vector multiplication per
iteration. Particularly, pre-multiplying rk = rk−1−αk−1Apk−1 by rtk we obtain:

rtkrk =−αk−1r
t
kApk−1 ;

and pre-multiplying by pt
k−1 = rtk−1−sk−1pt

k−2 we obtain:

0 =pt
k−1rk = (rtk−1−sk−1pt

k−2)rk−1−αk−1p
t
k−1Apk−1 = rtk−1rk−1−αk−1p

t
k−1Apk−1 .

Thus we can compute sk and αk instead as:

sk =−
pt
k−1Ark

pt
k−1Apk−1

=
rtkrk

rtk−1rk−1
, αk =

rtkrk
pt
kApk

. (4.1)

Finally, the next residual is updated from the previous one by:

rk+1 = rk−αkApk , (4.2)

where the product of Apk is already available in computing αk. To this end, the following version

6



of the method only requires one matrix-vector multiplication per iteration:

r0 = b−Ax0 , k= 0 ; (4.3)

while rk 6= 0 :

if k= 0

p0 = r0 ;

else

sk = rtkrk/r
t
k−1rk−1 ;

pk = rk +skpk−1 ;

end

αk = rtkrk/p
t
kApk ;

xk+1 =xk +αkpk ;

rk+1 = rk−αkApk ;

k= k+1 ;

end

x=xk .

Using the structure of Kk, we see that with exact arithmetics the algorithm (4.3) converges in at
most n steps; and if A= I+B such that rankB= r, it converges in at most r+1 steps.

Finally, we state without proof an estimate on the error of the conjugate gradient method:

||x−xk||A≤ 2||x−x0||A
(√

κ−1√
κ+1

)k

, (4.4)

where κ=κ2(A) is the condition number of A in the induced L2-norm. More details can be found
in David G. Luenberger’s work [1].

Exercises

Exercise 1. Let K be a k-dimensional subspace of Rn with a basis v1 , v2 , ··· , vk. Then the
orthogonal complement of K is defined as:

K⊥= {w∈Rn : wtv = 0 ∀v ∈K} . (4.5)

Let u∈Rn be arbitrary, its orthogonal decomposition with respect to K is:

u=w+v , such that w∈K⊥ and v ∈K . (4.6)

(i) Show that this decomposition is unique.
Usually we denote this unique v by Pu and w by (I−P)u where P :Rn→K is known as the

projection of Rn onto K and I :Rn→Rn is the identity map.
(ii) Prove that v =Pu minimizes the distance between any vector of K and u, i.e.,

v =Pu= argmin
v′∈K

∣∣∣∣v′−u
∣∣∣∣ . (4.7)
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Hint: We just need to show that ||v′−u||≥||v−u|| for all v′∈K. This is rewritten as ||(v′−v)−w||≥
||w||. To proceed, use w∈K⊥ to show that ||(v′−v)−w||2 = ||v′−v||2+ ||w||2.

Now let V = [v1 v2 ··· vk]∈Rn×k, then any vector of K can be written as V y with some y∈Rk.
(iii) Use this representation and (4.7) to show:

Pu=V (V tV )−1V tu . (4.8)
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