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1 The Minimum-Residual Krylov Subspace Methods

We look at more detail into the projection method, where a solution candidate x̃ in the affine space
x0+K is searched for, so that the residual r=b−Ax is orthogonal to a linear subspace L. Let A be
any non-singular n×n matrix (not necessarily symmetric), and let {v1,···,vm} and {w1,···,wm} be
bases for K and L, respectively. Denote V =[v1 v2 ··· vm]∈Rn×m and W =[w1 w2 ··· wm]∈Rn×m,
then we have the first claim that if such a solution x̃ exists, it is given by:

x̃=x0+V (W tAV )−1W tr0 . (1.1)

To show this, first note that the set x0+K is equivalent to:

{x0+V y : y ∈Rm} .

Thus if we denote x̃=x0+V ỹ for some ỹ ∈Rm, there is:

r̃∈L⊥ ⇔ 0 =W tr̃ =W t[b−A(x0+V ỹ)] =W t(r0−AV ỹ) , (1.2)

or equivalently ỹ = (W tAV )−1W tr0
1; (1.1) follows naturally.

Theorem 1.1. If A is an arbitrary non-singular n×n matrix and assume L=AK, then the x̃
obtained by the previous process minimize the L2-norm of the residual vector. In addition, let P be
the orthogonal projector onto the subspace AK, then the residual r̃= b−Ax̃ satisfies:

r̃ = (I−P )r0 . (1.3)

Proof. Let V ∈Rn×m be the matrix composed of a basis of K as before, then we can select a basis of
L as W =AV . Define φ(y) = ||b−A(x0+V y)||2 = ||r0−AV y||2 =ytV tAtAV y−2ytV tAtr0+rt0r0
then:

∇φ(y) =V tAtAV y−V tAtr0 .

Because A is non-singular and V is full-rank, we have V tAtAV is non-singular and thusly symmetric
positive-definite. Hence ỹ minimize φ(y) if and only if ∇φ(ỹ) = 0 or equivalently:

ỹ = (V tAtAV )−1V tAtr0 = (W tAV )−1W tr0 ,

the same as the solution to the projection method before.

1That W tAV is invertible comes classical results in linear algebra; for example we can use the Sylvester’s rank
inequality to show that rankW tAm, and then use the fact that the rank of a matrix equals the largest order of any
non-zero minor to show that rank(W tA)V =m.
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For the second part, we note that:

r̃= r0−AV ỹ = (I−AV (V tAtAV )−1V tAt)r̃0 ,

where P =AV (V tAtAV )−1V tAt=W (W tW )−1W t is exactly the orthogonal projector on to L=AK
(see the exercise from the last lecture).

Usually we hope that if the true solution is in the affine space x0 +K, the projection method
will provides the exact solution, i.e. r̃=0. Recalling that in the case of conjugate gradient method,
when the solution is in the affine space x0+Kk we have Ak+1r0∈Kk or Kk =AKk. This turns out
to be a very general situation, as seen in Exercise 1.

A Krylov subspace method (or Krylov method for simplicity) is a special case of the project
methods such that:

Km = span(r0,Ar0,···,Am−1r0)
2 , (1.4)

where r0 = b−Ax0. Two widely used versions of the Krylov methods are (1) Lm =AKm and (2)
Lm =AtKm. Due to Theorem 1.1, the first variation is also called the minimum-residual Krylov
subspace methods. We shall discuss the minimum-residual Krylov methods in more detail in this
lecture, whereas the other one in the next lecture.

2 Arnoldi’s Algorithm

Using the basis (1.4) is generally not computational efficient, especially when m is large. A common
strategy is to construct a basis {v1,v2,···,vm} of Km gradually, so that the basis is composed of
mutually orthogonal unit vectors. For example, in the conjugate gradient method it turns out that
Km = span(r0,···,rm−1) and all the residual vectors are orthogonal to each other.

The method that constructs the basis Vm = [v1 v2 ··· vm] from (1.4) is called the Arnoldi’s
algorithm. This is in essence an orthonormalization problem that will be discussed in more detail
in later lectures. Here we just adopt one of the simplest method for this purpose (the Gram-Schmidt
process), and other variants will be discussed when the orthogonal reduction is formally introduced.
The Gram-Schmidt-based Arnoldi’s algorithm is given below (we suppose r0 6= 0):

v1 = r0/||r0|| ; (2.1)

for j= 1,···,m :

wj =Avj ;

for i= 1,···,j :

hij =wj ·vi ;

wj =wj−hijvi ;

end

hj+1,j = ||wj || ;
if hj+1,j = 0, stop ;

vj+1 =wj/hj+1,j ;

end

2Note that we change the last power comparing to the conjugate gradient method.
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We can derive a matrix representation for the previous algorithm:

Avj =

j+1∑
i=1

hijvi ⇒ hj+1,jvj+1 =Avj−
j∑

i=1

hijvi , 0≤ j≤m.

This is equivalent to:
AVm =VmHm+wmetm =Vm+1Hm , (2.2)

where Hm ∈Rm×m is an Hessenberg matrix:

Hm =



h11 h12 h13 ··· h1,m−2 h1,m−1 h1m
h21 h22 h23 ··· h2,m−2 h2,m−1 h2m
0 h32 h33 ··· h3,m−2 h3,m−1 h3m
0 0 h43 ··· h4,m−2 h4,m−1 h4m
...

...
...

...
...

...
...

0 0 0 ··· 0 hm,m−1 hmm


, (2.3)

em is the last unit vector of Rm, and Hm∈R(m+1)×m is given by Hm=

[
Hm

hm+1,metm

]
. Furthermore,

because V t
mVm = I ∈Rm×m and V t

mwm = 0, we have:

V t
mAVm =Hm . (2.4)

Finally, let us look at the stopping condition for the Arnoldi’s algorithm: The method stops at the
j-th iteration if and only if hj+1,j =0 and in this case wj =0. Hence Avj =

∑j
i=1hijvj ∈Kj , i.e., Kj

is invariant under A. Later on we will see that in the GMRES algorithm, this condition indicates
that the residual is zero after the j-th iteration.

3 GMRES

The generalized minimum residual method (GMRES) is a Krylov subspace method where Lm =
AKm and v1 =r0/||r0||, so that an orthonormal unit basis for Km can be constructed according to
the Arnoldi’s algorithm. From Theorem 1.1, the iteration xm is found in the affine space x0+Km

so that the L2-norm of the residual ||b−Ax|| is minimized. Writing x=x0+Vmy, y∈Rm we have:

r = b−Ax= r0−AVmy =βv1−Vm+1Hmy =Vm+1(βe1−Hmy) , (3.1)

where β = ||r0|| and e1 is the first unit basis vector of Rm+1. Clearly, ||r||=
∣∣∣∣βe1−Hmy

∣∣∣∣, thus
xm =x0+Vmym can be constructed by solving the smaller least-squares problem:

ym = arg min
y∈Rm

∣∣∣∣βe1−Hmy
∣∣∣∣ . (3.2)

To this end, we convert the problem of solving a linear system into least-squares problems. Thus
whenever a robust least-squares solver is available, we can combine it with the Arnoldi’s algorithm
before to construct a GMRES solver for linear systems.

Especially, by exploring the fact that Hm is an Hessenberg matrix one can construct a very
efficient least-squares solver for (3.2) that is based on Householder transformation. The Householder
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transformation is very robust because it involves only multiplication rather than divisions, c.f. in

the Gaussian elimination process we inevitably need to divide by the numbers a
(k)
kk that could be

very small and cannot be predicted from the initial data.
Concerning the robustness, one may observe that in the Arnoldi’s algorithm (2.1), we may also

run into the issue with hj+1,j 6= 0 is very small; it turns out that this issue can also be resolved by
incorporating the Householder transformation in the construction of a orthonormal unit basis for
Km. The Householder transformation as well as the enhanced GMRES will be discussed in more
detail in the later lecture on the least-squares problems.

Lastly, we look at the breakdown of the GMRES algorithm. Particularly, if hm+1,m = 0 at the
m-th iteration, as discussed in the Arnoldi’s algorithm there is Km =AKm and the iterations stuck
at xm. The important question we want to answer is that in this case, xm is the exact solution, or
rm = 0. This is left as Exercise 2.

4 Practical Variants of GMRES

Other than enhancing the robustness of the GMRES method with Householder transformation,
people also concerns about other practical issues. For example, larger m will demand more memory
storage for the basis of Km, i.e., Vm. A first effort to improve the memory usage results in the
so-called restarted GMRES, in which case people set a small 0<m0�n, and whenever the m0-th
iteration is reached, one set x0 =xm0 and start from scratch the GMRES algorithm with this new
“initial guess”. The major argument against the restarted GMRES is that: Despite the fact that
GMRES will converge in no more than n iterations, the restarted GMRES may fail to converge.
Thus people need to find a balance between choosing the number m0, where a smaller m0 requires
less memory but increases the chance of divergent solutions.

A more reliable method that works much better in practice is the direct quasi-GMRES method
(DQGMRES) or truncated GMRES. In this case, people still needs to select a small number m0>0;
but instead of restart after m0 iterations, DQGMRES will keep up to m0 most recent orthonormal
basis vectors of Vm. The major benefit of doing so is due to a theorem of Nachtigal, that if Vm+1,
the Arnoldi’s basis associated with the DQGMRES is of full rank (note that only the adjacent m0

column vectors of Vm+1 are guaranteed to be orthogonal to each other), then we have:∣∣∣∣rQm∣∣∣∣≤κ(Vm+1)
∣∣∣∣rGm∣∣∣∣ ,

where rQm is the residual of DQGMRES at the m-th iteration, rGm is that of the full GMRES, and
κ() is the condition number computed using the induced L2-norm for matrices (pseudo-inverse is
used here for non-square matrices).

Exercises

Exercise 1. Under the assumption of Theorem 1.1, suppose x0 = 0, b∈K, and K=AK, then x̃ is
the exact solution to Ax= b.
Hint: That is, to show r̃ = 0 or r̃0 ∈AK.
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Exercise 2. Suppose Hm (and hence also Hm, with possible hm+1,m = 0) is constructed, then by
V t
mAVm =Hm we know that Hm is non-singular. Define ỹm =H−1m (βe1) and let x̃m =x0 +Vmỹm

and r̃m = b−Ax̃m. Show that:
||r̃m||=hm+1,m

∣∣etmỹm

∣∣ ,
and deduce that if hm+1,m = 0 for some m, the solution xm to the GMRES method is exact (i.e.,
rm = 0).
Hint: For the second part, use the minimum-residual property of xm.
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