
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 6: Conjugate Gradient Method for General Systems

Xianyi Zeng
Department of Mathematical Sciences, UTEP

1 The Lanczos Method

We consider applying the Arnoldi’s method to symmetric systems. In particular, we learned from
previous lecture that:

V t
mAVm =Hm ,

hence when A is symmetric, Hm is also symmetric or even better, tridiagonal. This gives rise to a
simplified version of the Arnoldi’s algorithm for symmetric systems:

v1 = r0/||r0|| , β1 = 0 , v0 = 0 ; (1.1)

for j= 1,···,m :

wj =Avj−βjvj−1 ;

αj =wj ·vj ;

wj =wj−αjvj ;

βj+1 = ||wj || ;
if βj+1 = 0, stop ;

vj+1 =wj/hj+1,j ;

end

or in matrix form in place of the Hessenberg matrix Hm, we have the tridiagonal matrix Tm:

Tm =

α1 β2

β2 α2
. . .

. . .
. . . βm
βm αm

 (1.2)

The tridiagonal structure of Tm is very much appreciated but it is only obtained when A is
symmetric. For non-symmetric matrices, however, Lanczos proposed to build a pair of biorthogonal
bases for two subspaces:

Km(A,v1) = span(v1,Av1,···,Am−1v1) , (1.3)

and
Km(At,v1) = span(w1,A

tw1,···,(At)m−1w1) . (1.4)

The target is to build two orthogonal bases {v1,···,vm} and {w1,···,wm} for the two subspaces,
respectively, such that they satisfy the following biorthogonal condition:

vi ·wj = δij , (1.5)

1

the Kronecker delta symbol. Note that we drop the requirement that vi and wi are unit vectors.
The corresponding modified algorithm is known as the Lanczos biorthogonalization procedure:

Choose v1,w1 : v1 ·w1 = 1 ; (1.6)

β1 = δ1 = 0 , v0 =w0 ;

for j= 1,···,m :

αj = (Avj) ·wj ;

v̂j+1 =Avj−αjvj−βjvj−1 ;

ŵj+1 =Atwj−αjwj−δjwj−1 ;

δj+1 =
√
|v̂j+1 ·ŵj+1| ;

if δj+1 = 0, stop ;

βj+1 = v̂j+1 ·ŵj+1/δj+1 ;

wj+1 = ŵj+1/βj+1 ;

vj+1 = v̂j+1/δj+1 ;

end

In this case, we define a tridiagonal matrix:

Tm =

α1 β2

δ2 α2
. . .

. . .
. . . βm
δm αm

 , (1.7)

and deduce the following matrix-relations of the preceding algorithm:

vj ·wi = δij , (1.8a)

AVm =VmTm+δm+1vm+1e
t
m , (1.8b)

AtWm =WmT
t
m+βm+1wm+1e

t
m , (1.8c)

W t
mAVm =Tm . (1.8d)

Despite the fact that the algorithm (1.6) leads to a smaller matrix Tm comparing to the full
Hessenberg one Hm, it in effect solves two linear systems: one associated with A and the other
one associated with At. Furthermore, we will need to store two sets of basis instead of one set in
the original Arnoldi’s algorithm. A more serious issue of the Lanczos algorithm for non-symmetric
matrices is the potential risk of “serious breakdown”.

To see this point, in the practical world the Arnoldi’s method the algorithm stops only if
hj+1,j ≈ 0, or when Km is close to be invariant under the operation of A, which indicates that the
affine space almost contains the true solution. For the Lanczos method (1.6), however, there exists
“lucky breakdown” when v̂j+1≈ 0 meaning that Km is almost invariant under A; but there is also
“serious breakdown” when v̂j+1 ·ŵj+1≈0, in which case the algorithm may stop without finding a
good affine space that is close to contain the true solution.

Despite these drawbacks, the Lanczos’ method lays out a framework for designing other more
robust algorithms, including a generalized conjugate gradient method for both symmetric and non-
symmetric systems that is widely used in practice.

2

2 The Quasi-Minimal Residual Method

The first method we’ll look at is called the quasi-minimal residual (QMR) method. It is very similar
to the GMRES, except that we replace the Arnoldi’s process by the Lanczos’ method (1.6). Recall
that Hm is only tridiagonal when A is symmetric, thus for general system Ax=b, QMR in general
does not give rise to an orthonormal basis. Let us denote:

Tm =

[
Tm

δm+1e
t
m

]
(2.1)

similar as before (c.f. Hm for GMRES); then we have AVm = Vm+1Tm. For x ∈ x0 +Km or
equivalently x=x0+Vmy , y ∈Rm:

b−Ax= r0−AVmy =βv1−Vm+1Tmy =Vm+1(βe1−Tmy) .

Following the philosophy of minimizing the residual as in GMRES, we’d like to search for ym∈Rm

so that ||r0−AVmy|| is minimized. In GMRES, this is equivalent to minimize
∣∣∣∣βe1−Hmy

∣∣∣∣; in
QMR, we still choose ym as:

ym = arg min
y∈Rm

∣∣∣∣βe1−Tmy
∣∣∣∣ . (2.2)

This least-squares problem is easier to solve than that of GMRES because Tm is tridiagonal; but
this ym in general does not minimize the residual since V t

m+1Vm+1 usually is not the identity matrix.
The major advantage of QMR over GMRES is that the former is less storage demanding and the

associated least-squares problem is much easier to solve. The disadvantage includes the possible
stop of the Lanczos process due to serious breakdowns. However, if we know that the Lanczos
algorithm does not break at the m-th iteration (i.e., we construct Vm+1 successfully), the following
estimate can be obtained: ∣∣∣∣rQm∣∣∣∣≤κ(Vm+1)

∣∣∣∣rGm∣∣∣∣ , (2.3)

where rQm and rGm are the residual vectors obtained from the QMR and GMRES, respectively; and
κ(Vm+1) is the condition number w.r.t. L2-norm of the matrix Vm+1. Hence providing that the
Lanczos process does not break and that Vm+1 is well conditioned, we expect QMR to converge. In
practice, people modify the original Lanczos process to avoid “serious breakdown”, such as restart
the process whenever ||v̂j+1|| is not small but v̂j+1 ·ŵj+1 is so.

3 The Conjugate Gradient Method for Non-Symmetric Systems

In order to relate the Lanczos algorithm to the conjugate gradient method, we first look at algo-
rithm (1.1) and consider the LU decomposition Tm=LmUm, where Lm has unity diagonal elements.
Recalling that in showing the convergence of the GMRES method (the exercise from last lecture),
we constructed a sequence ỹm that can be obtained by solving a linear system with Hessenberg
matrix Hm. This method is known as FOM (Full Orthogonalization Method). The counterpart of
using the Lanczos algorithm for symmetric systems gives:

x̃m =x0+VmT
−1
m (βe1) =x0+VmU

−1
m V −1m (βe1) =x0+Pmzm , (3.1)

where Pm =VmU
−1
m and zm =V −1m (βe1).

3

The n×m matrix Pm has a very interesting property:

P t
mAPm =U−tm V t

mAVmU
−1
m =U−tm TmU

−1
m =U−tm Lm ,

which is lower tridiagonal as well as symmetric; hence P t
mAPm is diagonal. That is, the column

vectors of Pm are A-conjugate to each other.
Furthermore, Um+1 contains Um as its upper-left block, the same relation holds for U−1m+1 and

U−1m . That is:

U−1m+1 =

[
U−1m q

0 γ

]
and we have:

Pm+1 =Vm+1U
−1
m+1 =

[
Vm vm+1

][U−1m q
0 γ

]
=
[
Pm pm+1

]
.

Thus the method is equivalent to gradually building the subspace Km by finding the search direc-
tions pm that are A-conjugate to each other. This is exactly the conjugate gradient method we’ve
studied before!

Next we extend this idea to non-symmetric systems starting with the Lanczos algorithm (1.6).
In this case, we still write Tm =LmUm and compute xm according to (3.1); however, the column
vectors of Pm are no longer A-conjugate to each other. To this end, let P ′m =WmL

−t
m :

(P ′m)tAPm =L−1m W t
mAVmU

−1
m =L−1m TmU

−1
m = I , (3.2)

thus the column vectors of P ′m and those of Pm are A-conjugate to each other:

(p′i)
tApj = δij . (3.3)

Similar as before, p′i and pi form the bases of Km(At,w1) and Km(A,v1) and they are built gradually.
This leads to a CG-like algorithm for general systems:

r0 = b−Ax0 , Choose r′0 s.t. r0 ·r′0 6= 0 ; (3.4)

p0 = r0 , p
′
0 = r′0 ;

for j= 0,1,···,until converge :

αj = (rj ·r′j)/((Apj) ·p′j) ;

xj+1 =xj +αjpj ;

rj+1 = rj−αjApj ;

r′j+1 = r′j−αjA
tp′j ;

βj = (rj+1 ·r′j+1)/(rj ·r′j) ;

pj+1 = rj+1+βjpj ;

p′j+1 = r′j+1+βjp
′
j ;

end

4

Properties of the biconjugate gradient method include:

rj ·r′i = 0 , (Apj) ·p′i = 0 , ∀i 6= j ; (3.5a)

(Apj) ·r′i = (Apj) ·(p′i−βi−1p′i−1) = 0 , ∀i 6= j,j+1 ; (3.5b)

(Arj) ·p′i =
1

αi
rj ·(r′i−r′i+1) = 0 , ∀i 6= j,j−1 , (3.5c)

providing that the algorithm does not stop, i.e., αj 6= 0.

The algorithm (3.4) suffers from the same issue as the Lanczos biorthogonalization process
before. First we deal with the need for the transpose of A, i.e., in the update r′j+1 = r′j−αjA

tp′j .
This is problematic because in Newton-based nonlinear solves, A usually represents the Jacobian
matrix. In this case, a widely used methodology, so called the Jacobian-free method, approximates
Ad by:

Ad≈ 1

ε
(f(x+εd)−f(x)) ,

where ε is a small number and A= ∂f/∂x. Within such a context, Atd is not easy to evaluate.
Now we consider constructing a transpose-free version of the BCG algorithm. Particularly, we

notice there exist polynomials of degree j, namely φj and πj such that φj(0) = 1 and:

rj =φj(A)r0 , pj =πj(A)r0 ;

r′j =φj(A
t)r′0 , p′j =πj(A

t)r′0 .

To eliminate the usage of At, we would like to avoid computing r′j explicitly. For example:

αj =
rj ·r′j

(Apj) ·p′j
=

(φ2j (A)r0) ·r′0
(Aπ2j (A)r0) ·r′0

, βj =
rj+1 ·r′j+1

rj ·r′j
=

(φ2j+1(A)r0) ·r′0
(φ2j (A)r0) ·r′0

,

where we used the fact that (φj(A))t =φj(A
t) and (πj(A))t =πj(A

t).
The foundation of the conjugate gradient squared (CGS) method is the recurrences for:

r̃j =φ2j (A)r0 ,

p̃j =π2j (A)r0 ,

q̃j =φj+1(A)πj(A)r0 ,

instead of using rj , pj , r
′
j , and p′j . To derive a recursive formula for updating these vectors, we

first note that:
rj+1 = rj−αjApj ⇒ φj+1(A) =φj(A)−αjAπj(A) ,

and:
pj+1 = rj+1+βjpj ⇒ πj+1(A) =φj+1(A)+βjπj(A) .

Hence:

r̃j+1 =φ2j+1(A)r0 =
[
φ2j (A)−2αjAφj(A)πj(A)+α2

jA
2π2j (A)

]2
r0

= r̃j−αjA(2r̃j +2βj−1q̃j−1−αjAp̃j) ,

p̃j+1 =π2j+1(A)r0 = [φj+1(A)+βjπj(A)]2r0 = r̃j+1+2βj q̃j +β2j p̃j ,

q̃j =φj+1(A)πj(A)r0 = [φj(A)−αjAπj(A)]πj(A)r0

= r̃j +βj−1q̃j−1−αjAp̃j ,

5

which completes the loop.
The resulted algorithm reads:

r0 = b−Ax0 , Choose r′0 s.t. r0 ·r′0 6= 0 ; (3.6)

p0 =u0 = r0 ;

for j= 0,1,···, until converge :

αj = (rj ·r′0)/((Apj) ·r′0) ;

qj =uj−αjApj ;

xj+1 =xj +αj(uj +qj) ;

rj+1 = rj−αjA(uj +qj) ;

βj = (rj+1 ·r′0)/(rj ·r′0) ;

uj+1 = rj+1+βjqj ;

pj+1 =uj+1+βj(qj +βjpj) ;

end

Here we omitted the tilde for clarity – the vectors in (3.6) should not be confused with the same
symbols in (3.4). Note that the iterate xj is computed in a way such that it leads to the residual
rj = φ2j (A)r0, which in general does not coincide with an iterate of the original BCG method.
However, we know that if BCG converges φm(A)r0 = 0 for some m > 0, hence we also expect

φ2m(A)r0 = 0, i.e., the CGS also converges in m iterations. Furthermore, because
∣∣∣∣∣∣φ2j (A)r0

∣∣∣∣∣∣≤
||φj(A)||||φj(A)r0||, the CGS is expected to converge faster (usually twice as fast) than the BCG
method. The important contribution of the CGS method is that it does not require any matrix-
vector multiplication involving At; but two such operations with A are involved instead of one
comparing to BCG.

One issue with the CGS method is that since the polynomials are squared comparing to the
BCG method, it is more vulnerable to round-off errors. In the next lecture, we describe the
last algorithm for linear systems in this class, namely the biconjugate gradient stabilized or the
BICGSTAB algorithm. It is designed based on an idea similar to CGS that avoids matrix-vector
multiplication withAt as well as a procedure similar to the SOR method where an optimal relaxation
parameter is computed for each iteration.

6

	The Lanczos Method
	The Quasi-Minimal Residual Method
	The Conjugate Gradient Method for Non-Symmetric Systems

