
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 7: Biconjugate Gradient Stabilized (BICGSTAB)

Xianyi Zeng
Department of Mathematical Sciences, UTEP

1 The BICGSTAB Algorithm: Setup

The biconjugate gradient stabilized method combines ideas of both CGS and SOR. Particular, we
look for an algorithm such that the residuals and the search directions are given by:

rj =ψj(A)φj(A)r0 , (1.1)

pj =ψj(A)πj(A)r0 . (1.2)

Here φj and πj are the same polynomials as before in CGS, and they give rise to the residual and
the search direction of the original biconjugate gradient algorithm.

The rest polynomial ψj(t) is defined recursively by:

ψj+1(t) = (1−ωjt)ψj(t) , (1.3)

in which ωj is the “stabilizing” parameter to be determined later. Recall that φj and πj satisfy the
recursive relation:

φj+1(t) =φj(t)−αjtπj(t) , (1.4)

πj+1(t) =φj+1(t)+βjπj(t) ; (1.5)

then the update formula for rj is:

ψj+1φj+1 = (1−ωjt)ψj(φj−αjtπj) = (1−ωjt)(ψjφj−αjtψjπj)

⇒ rj+1 = (I−ωjA)(rj−αjApj) . (1.6)

The formula for pj+1 can be determined from rj+1:

ψj+1πj+1 =ψj+1(φj+1+βjπj) =ψj+1φj+1+βj(1−ωjt)ψjπj ,

⇒ pj+1 = rj+1+βj(I−ωjA)pj . (1.7)

We would like to compute the two scalars αj and βj . For example, βj = ρj+1/ρj where:

ρj = (φj(A)r0) ·(φj(At)r′0) = (φ2j (A)r0) ·r′0 . (1.8)

Unfortunately this quantity is not computable from rj and pj . What we can compute is:

ρ̃j = (φj(A)r0) ·(ψj(A
t)r′0) = (rj ,r

′
0) . (1.9)

In order to relate ρj and ρ̃j , we write:

ψj(t) = a
(j)
0 tj +a

(j)
1 tj−1+ ···+a

(j)
j−1t+a

(j)
j , (1.10)

φj(t) = b
(j)
0 tj +b

(j)
1 tj−1+ ···+b

(j)
j−1t+b

(j)
j . (1.11)

1

From the BCG procedure, φj(A)r0 is orthogonal to φk(At)r′0 for all k<j, see (3.5a) from previous
lecture; hence (φj(A)r0) ·((At)j−kr′0) = 0 for all k > 1, i.e.

ρ̃j =

j∑
k=0

(φj(A)r0) ·(a(j)k (At)j−kr′0) = a
(j)
0 (φj(A)r0) ·((At)jr′0) ,

ρj =

j∑
k=0

(φj(A)r0) ·(b(j)k (At)j−kr′0) = b
(j)
0 (φj(A)r0) ·((At)jr′0) ,

or we derive:

ρ̃j =
a
(j)
0

b
(j)
0

ρj . (1.12)

Following (1.3) we have:

a
(j+1)
0 =−ωja

(j)
0 , (1.13)

and following (1.6) and (1.7) we have:

b
(j+1)
0 =−αjb

(j)
0 . (1.14)

As a result:
ρ̃j+1

ρ̃j
=
a
(j+1)
0

b
(j+1)
0

b
(j)
0

a
(j)
0

ρj+1

ρj
=
ωj

αj

ρj+1

ρj
, ⇒ βj =

αj ρ̃j+1

ωj ρ̃j
. (1.15)

We also need a formula to compute αj , which can be obtained by the leading-term analysis:

αj =
(φj(A)r0) ·(φj(At)r′0)

(Aπj(A)r0) ·(φj(At)jr′0)
=

(φj(A)r0) ·(b(j)0 (At)r′0)

(Aπj(A)r0) ·(b(j)0 (At)jr′0)

=
(φj(A)r0) ·(a(j)0 (At)r′0)

(Aπj(A)r0) ·(a(j)0 (At)jr′0)
=

(φj(A)r0) ·(ψj(A
t)r′0)

(Aπj(A)r0) ·(ψj(At)r′0)
,

thus:

αj =
rj ·r′0

(Apj) ·r′0
=

ρ̃j
(Apj) ·r′0

. (1.16)

2 The BICGSTAB Algorithm: Stabilization

Next we determine the value of ωj . Let:

sj = rj−αjApj , (2.1)

then the next residual is given by:
rj+1 = (I−ωjA)sj . (2.2)

Since sj is known at this point, an obvious choice for ωj is that who minimizes the L2-norm of
rj+1, or equivalently:

ωj =
(Asj) ·sj

(Asj) ·(Asj)
. (2.3)

2

Finally, a formula is needed to compute the next approximation xj+1 which gives rise to the residual
rj+1. Since:

rj+1 = sj−ωjAsj = rj−αjApj−ωjAsj = b−Axj−αjApj−ωjAsj ,

then clearly the solution is:
xj+1 =xj +αjpj +ωjsj . (2.4)

Note that we no longer have a line search, c.f. the conjugate gradient method.
At last, we relate the BICGSTAB residuals to BCG residuals. Particularly, let rBj and rGj be

the j-th residuals obtained by the two methods, respectively, we have:

rBj =ψj(A)rGj = (I−ωjA)ψj−1(A)rGj = ···=
j∏

k=0

(I−ω0A)rGj ,

The first observation is that if rGj = 0, then rBj = 0, indicating the convergence of BICGSTAB
as long as BCG converges to the true solution, providing exact arithmetics. Furthermore, the
product generally creates a smoothing effect when we move from one iteration to the next, and
for practical computations people usually observe smoother convergence (to zero) of BICGSTAB
residuals comparing to that of BCG residuals. For example, Figure 1 compares the convergence of
the three methods we’ve described so far for solving a two-dimensional diffusion equation [1].

Figure 1: Convergence of BICGSTAB, BCG, and CGS for solving −(Dux)x−(Duy)y =1 by a finite
difference method [1].

Note that although BICGSTAB proves to be more robust than BCG in practice, it may still
diverge when ri ·r′0 is close to zero (namely the “serious breakdown” of the Lanczos biorthogonal-
ization procedure). In practice, people usually employ the restart strategy whenever this happens.

At the end of this lecture we list the full algorithms for a few of the CG-based methods we’ve
discussed. Here ε0 is a small tolerance that we choose in order to determine when to stop the
iterations.

3

Algorithm 2.1 Conjugate Gradient (CG)

1: Compute r0 = b−Ax0, p0 = r0
2: for j= 0,1,··· do
3: αj = (rj ·rj)/((Apj) ·pj)
4: xj+1 =xj +αjpj

5: rj+1 = rj−αjApj

6: if ||rj+1||<ε0 then
7: Break;
8: end if
9: βj = (rj+1 ·rj+1)/(rj ·rj)

10: pj+1 = rj+1+βjpj

11: end for
12: Set x=xj+1

Algorithm 2.2 Conjugate Gradient Squared (CGS)

1: Compute r0 = b−Ax0, choose r′0 such that r0 ·r′0 6= 0
2: Set p0 =u0 = r0
3: for j= 0,1,··· do
4: αj = (rj ·r′0)/((Apj) ·r′0)
5: qj =uj−αjApj

6: xj+1 =xj +αj(uj +qj)
7: rj+1 = rj−αjA(uj +qj)
8: if ||rj+1||<ε0 then
9: Break;

10: end if
11: βj = (rj+1 ·r′0)/(rj ·r′0)
12: uj+1 = rj+1+βjqj
13: pj+1 =uj+1+βj(qj +βjpj)
14: end for
15: Set x=xj+1

4

Algorithm 2.3 Biconjugate Gradient Stabilized (BICGSTAB)

1: Compute r0 = b−Ax0, choose r′0 such that r0 ·r′0 6= 0
2: Set p0 = r0
3: for j= 0,1,··· do
4: αj = (rj ·r′0)/((Apj) ·r′0)
5: sj = rj−αjApj

6: ωj = ((Asj) ·sj)/((Asj) ·(Asj))
7: xj+1 =xj +αjpj +ωjsj
8: rj+1 = sj−ωjAsj
9: if ||rj+1||<ε0 then

10: Break;
11: end if
12: βj = (αj/ωj)×(rj+1 ·r′0)/(rj ·r′0)
13: pj+1 = rj+1+βj(pj−ωjApj)
14: end for
15: Set x=xj+1

Numerical Exercise

In this exercise, we use the Conjugate Gradient (CG) method 2.1, the CGS algorithm 2.2, and
the BICGSTAB algorithm 2.4 to solve several linear systems that stem from practical applications.
Note that this BICGSTAB method is slightly different from the previous one in the following:

• After computing sj , we check if it is close to zero. Indeed, as sj is given in residual form
(with corresponding solution x′j =xj +αjpj), we should terminate the algorithm if x′j gives
a small enough residual.

• At the end of every loop, we check if “serious breakdown” will occur. The value 1e−6 could
be replaced by any other small positive number; but for this exercise we’ll just use the former.

5

Algorithm 2.4 Biconjugate Gradient Stabilized (BICGSTAB) with restart

1: Compute r0 = b−Ax0, choose r′0 such that r0 ·r′0 6= 0
2: Set p0 = r0
3: for j= 0,1,··· do
4: αj = (rj ·r′0)/((Apj) ·r′0)
5: sj = rj−αjApj

6: if ||sj ||<ε0 then
7: xj+1 =xj +αjpj

8: Break;
9: end if

10: ωj = ((Asj) ·sj)/((Asj) ·(Asj))
11: xj+1 =xj +αjpj +ωjsj
12: rj+1 = sj−ωjAsj
13: if ||rj+1||<ε0 then
14: Break;
15: end if
16: βj = (αj/ωj)×(rj+1 ·r′0)/(rj ·r′0)
17: pj+1 = rj+1+βj(pj−ωjApj)
18: if |rj+1 ·r′0|< 1e−6 then
19: r′0 = rj+1

20: pj+1 = rj+1

21: end if
22: end for
23: Set x=xj+1

For all the algorithms, we set ε0 = 1e−6. Note that most linear systems that are obtained directly
from the physical problem are in general difficult to solve, whichever method we choose. In practice,
we usually at least make use of some preconditioner to improve the convergence of the iterative
methods. These matrices will be dented by M and further explained in each sub-problem below.

1) We first consider a symmetric positive definite matrix A that results from discretizing a 2D heat
equation. The matrix A and the right hand side b are provided in the files mat sym A.txt and
mat sym b.txt, respectively. The format is described at the end of this exercise. For this problem,
we use the incomplete Cholesky factorization to compute a preconditioner M that is stored in
mat sym M.txt.

The basic idea of the incomplete Cholesky factorization is to compute a lower-triangular matrix
L such that LLt≈A, and we set M =L−1. Hence we expect MAM t≈ I to be better conditioned
than A itself. To this end, instead of solving x for Ax= b, we solve y such that MAM ty =Mb –
that is, we apply the CG, CGS, and BICGSTAB to solve the system for y:

(MAM t)y =Mb , (2.5)

rather than the original one for x.

2) We next consider a non-symmetric matrix A that results from discretizing a 2D advection-
diffusion equation. The matrix A, the right hand side b, and the precondition M are stored in

6

mat unsym A.txt, mat unsym b.txt, and mat unsym M.txt, respectively. For this problem, the
preconditioner M is obtained from the incomplete LU factorization. That is, we find a lower
triangular matrix L and an upper triangular matrix U such that LU≈A, and compute M=U−1L−1

so that MA≈ I. Finally, instead of solving Ax=b we apply the CGS and BICGSTAB to solve the
following equation:

(MA)x=Mb . (2.6)

Objective: Implement the CG, CGS, and BICGSTAB as provided, and use the parameter ε0=1e−6
and initial guess x0=0. Write a subroutine to read the matrix/vector information from the provided
data files, which are organized as below:

• Each vector file contain n+1 lines, where n is the dimension of the vector. The first line is an
integer with the value n, and the rest n lines corresponds to the n components in the natural
order.

• For each matrix file, the first line contains three integers in the form:

n n N

where n is the dimension of the matrix (i.e., an n×n matrix), and N is the number of non-zero
entries of the matrix. The rest of the file contains N lines, each line include two integers and
one real number:

i j α

which means that the (i,j)-th component of the matrix has the value α. The numbers in the
same line are separated by a single space.

Next, apply the CG, CGS, and BICGSTAB to solve the linear system for y (2.5); and apply the
CGS and BICGSTAB to solve the linear system for x (2.6). Finally, plot the residual histories in
a way similar to Figure 1.

References

[1] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 13(2):631–644, 1992.

7

	The BICGSTAB Algorithm: Setup
	The BICGSTAB Algorithm: Stabilization

