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1 From Linear System to Least Squares

In previous sections we solve the linear system Ax =b when A is square and non-singular. In the
more general case, the problem is not mathematically well-posed. Let A be any n xn matrix, but
det A =0, then the system Ax ="b:

e Has no solution if b ¢ col(A).
e Has infinite number of solutions if b € col(A).
Here col(A) is the column space of A:
col(A) =span(aj,as,,a,), (1.1)

where a;, i =1,---,n are the column vectors of A: A=[a; a2 - ay].
In a more general case let A € R™*" be any matrix, then Ax =b for b € R™ has at least one
solution € R™ if and only if b€ col(A). In particular, if b€ col(A):

e The solution is unique if and only if n <m and rank(A)=n, or equivalently dim(col(A))=mn.
e There are infinite number of solutions in all other situations.
We'll briefly prove the first statement:

Proof. If n<m and rank(A)=mn, then A’A € R" " is non-singular (see Appendix . Let x be any
vector that satisfies Ax =b, then:

(A'A)x = A'(Az) = A'b,

or equivalently:
x=(A'A)"1A, (1.2)

which demonstrates the uniqueness.
Conversely, we suppose Az =b has a unique solution g € R". Let y € ker(A), the null space of
A, then g+ is also a solution:

A(a:o—i-y):Aa:o—i—Ay:b—i—O:b.

Due to the uniqueness of &, we know that ker(A) only contains the zero vector, i.e., dim(ker(A4))=0.
But from the dimension theorem of linear algebra we know that dim(ker(A))=n—dim(col(A)), thus:

n—dim(col(A))=0 = dim(col(4))=n,

and consequently A has full rank n and m > n. O



In practice, however, we do not always have a well-posed system to solve (see the example in the
next section). To this end, people define instead the next least squares problem for any A € R"™*"™
and be R™:

in ||[Ax —bl|, . 1.3
in || [l (1.3)

Note that this problem always has at least one solutionlﬂ; but the solution may not be unique.
Particularly, if o minimize the residual then xy+y also minimize the residual for all y € ker(A).
Thus the least squares problem is always solvable, but not necessarily well-posed. A well-posed
extension is presented at the end of this lecture.

Theorem 1.1. x solves the least squares problem if and only if it solves the normal equation:
AtAx=A'b. (1.4)

This equation always has a solution, and the solution is unique if and only if the columns of A are
linearly independent (i.e., dim(col(A)) =rank(A)=n<m).

Proof. The first statement can be obtained as a consequence of the stationary condition for min-
imizing the convex quadratic form ¢(z) = (Az —b)'(Az —b), that is, Vo(x) =0. Here we instead
use a more direct approach. Let x solve the normal equation and let e € R™ be arbitrary, then:

||A(z+e)—b||* = (Az—b— Ae)'(Az—b— Ae) = || Az — b||* + || Ae||* — 2¢' (A’ Ax — A'Db)
= || Az —b|* +||Ae|* > || Az b||?,

and due to the arbitrary choice of e, the same @ solves the least squares problem. Conversely if @
solves (1.3) we define d = A Az — A'b, then for all e € R" we have:

0<||A(x+e)—b|>—||Ax —b||* = || Ae||* — 2e'd .
With the particular choice e = —ad, we have for all o> 0:
0<a’||Ad||*—2al[d|]* = 0<a|lAd||*~2||d|[*.

Letting a — 0, we have 2||d|[> <0 or d=0, i.e.,  solves the normal equation.

For the second part, clearly we just need to show that the normal equation always has a solution.
Indeed, due to Appendixthe column spaces of A® and A?A are the identical. Hence for all be R™,
we have:

A'b € col(A") =col(ATA) ,
or there exists an & € R" such that A'b= A’ Ax. O

To this end, the problem of solving the least squares problem is equivalent to solving the normal
equation, which we will discuss in more detail in the next lectures.

! An elegant proof can be obtained by the following result of real analysis: Any continuous function defined on a
compact set K CR" achieves its minimum and maximum on the set K.



2 Example: Polynomial Regression

An important application of the least squares problem is to find a polynomial fit of scattered data.
Let our data set be:
D={(zi,y;) : i,y €R,i=1,-n}. (2.1)

The target is to find a function f:R+— R, such that:
In polynomial regression, we search for a polynomial of degree m:
P () = @™ + 12"+ Farz4ag, (2.2)
so that the L2-norm of the difference vector z = [z:] €ER™, z; =y; — pm(z;) is minimized. Note that:
m
Zi=yi—pm(zi) =y — > apzy, 1<i<n,
k=0

we may write z in the matrix form:

z=y—Vn(x)a, (2.3)

where a = [a;] € R™t! and Vj,(x) € R"*(™+1) is the Vandermonde matrix:

1z 2 - 2
1 2o 23 - 2
Vin(z) = oo ' (2.4)
1 @, 22 T
non n 4 nx(m+1)

Then the problem of polynomial fitting, i.e., finding the coefficient vector a, reduces to the least
squares problem:
a=arg min ||V,,(z)a'—yl|. 2.5

g min |[Vin(z)a'—y| (2.5)
The existence of a solution (and hence p,,) is shown by Theorem furthermore, if z; # x; for
all i# j and n >m+1, the solution is unique. Due to the same theorem, we just need to show
that if all z;’s are different from each other, V,,,(x) has full rank; the latter is the consequence of a
special case — when m+1=mn and all z;’s are different, V,,,(x) is non-singular. In fact, one can use
induction to show that if m+1=mn, then:

detVi,(x) = H (xj—x;) #0. (2.6)

1<i<j<n

Hence we deduce that when all the data points x; are different, there is always a unique fit using
the polynomial of any degree m.



3 Pseudoinverse

Lastly, we briefly discuss a well-posed problem for general matrix A € R™*":

m:argirlléréum’w S={z'eR": HAwl—bH:;Iel]iRIiHAy_bH}‘ (3.1)

That is to say, we want to find the least squares solution with the smallest L2-norm. Its existence is
obtained similarly to the footnote before Theorem To show the uniqueness, we need a lemma:
if y;,y5 € R™ such that ||y,|| = ||ys||, then ||(y;+vy3)/2|| < ||ly;||; and the identity holds only if
Y, =Y. This is a direct consequence of the parallelogram identity:

2 2 2 2
2/ I" 2yl " = lly1 + w2l "+ [y — vl (3:2)
Now if both x; and @3 are solutions to (3.1)), we must have ||z1||=||z2||. Furthermore, 1,22 €S

indicates

[|Azy —b]| = [|Az2 - b]| .

By the previous lemma
1
[A((@1+22)/2) - bl < ||[Am1 = b]] = S(z1ta2)€S.
Invoking the lemma again, we have:

(@1 +22) /2] <[],

and by the assumption we must have the identity hold, i.e., 1 =ax2. We thusly conclude that the
solution to (3.1)) is unique.

Now we deviate ourselves from the numerical techniques and look at the analytical solution.
Let A=UZXV be the singular value decomposition (SVD) of A, where U € R™*"™ and V € R"*" are
orthogonal matrices, ¥ € R™*" is diagonal in the sense that only the (i,i)-th components of 3 are
(possibly) nonzero, where 1 <i <min(m,n). In addition, denoting the (i,i)-th component of ¥ by
o; we have:

o1>09>>0,>0, where k=min(m,n). (3.3)

Using the SVD of A and noting the fact that pre-multiplying by an orthogonal matrix preserves
the L?-norm, (3.1)) is equivalent to:

y:arg?ﬁlei‘rsllHy’H, S'={y eR": sz,_Uth:fg%{I}LHZZ_Uth}’

where the solution y is related to the solution @ of (3.1) by y = V. The members of &’ have
a surprisingly simple structure as the m equations are decoupled from each other. In particular,
y' =[y}] €S’ is given by:

yz’»:%[Utb]i, if 0;#0;

y, is arbitrary, if ¢>k or 0;=0.
Clearly the solution is given by setting all ¢} in the second line to be zero. The final result can be
written as:

r=Viy=VSTU',

where ¥ € R™ ™ has a similar structure as !, where every nonzero o; is replaced by 1/0;.

A+ 2Lyttt s known as the pseudoinverse of the matrix A.



Exercises

Exercise 1. Show that if we want to fit the data set such that x; # x;, Vi# j by a constant
function, that is, a polynomial of degree zero, this function is given by the arithmetic average of all

yi’s.
Exercise 2. Verify (@) for the case m+1=n=4. That is, show that:

1 21 xz :ci
1w x5 a5 |

det 1 25 x% a:g =(x4—x3) (x4 —22) (4 — 1) (23 —22) (T3 —21) (T2 — 1) .
1 x4 22 o3

Exercise 3. Compute the pseudoinverse of the following 3 X 2 matriz A:

22 24/2
A= -1 1
1 -1

You may use any software to compute the SVD decomposition of A.

A Show that col(A'A)=col(A) for any A€ R™*"
Let A; =col(A) and Ay = col(A'A), then we have:
Agz{AtA:L' cxeR"} C {Aty cyeRM™I=A;.
Thus Af € Ay . In fact, by the definition of orthogonal complement. Indeed:
uc At = wwv=0,Yvecd = wuv=0,Yvcdy = ucAy.
However, we can also show A3y C Af as follows:
ueAy = uA'A=0 = |Au|P=u'AlAu=0 = u'A'=0 = wucAf.

Thus At = A} and A; = (A1) = (A4)L = Af]

As a corollary, if A has full column rank (i.e., rank(A) =n) then A'A is non-singular.

2Check that for all subspace V of R™, (V*)* =V.
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