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1 From Linear System to Least Squares

In previous sections we solve the linear system Ax= b when A is square and non-singular. In the
more general case, the problem is not mathematically well-posed. Let A be any n×n matrix, but
detA= 0, then the system Ax= b:

• Has no solution if b /∈ col(A).

• Has infinite number of solutions if b∈ col(A).

Here col(A) is the column space of A:

col(A) = span(a1,a2,···,an) , (1.1)

where ai, i= 1,···,n are the column vectors of A: A= [a1 a2 ··· an].
In a more general case let A∈Rm×n be any matrix, then Ax = b for b∈Rm has at least one

solution x∈Rn if and only if b∈ col(A). In particular, if b∈ col(A):

• The solution is unique if and only if n≤m and rank(A) =n, or equivalently dim(col(A)) =n.

• There are infinite number of solutions in all other situations.

We’ll briefly prove the first statement:

Proof. If n≤m and rank(A) =n, then AtA∈Rn×n is non-singular (see Appendix A). Let x be any
vector that satisfies Ax= b, then:

(AtA)x=At(Ax) =Atb ,

or equivalently:
x= (AtA)−1Atb , (1.2)

which demonstrates the uniqueness.
Conversely, we suppose Ax=b has a unique solution x0∈Rn. Let y∈ker(A), the null space of

A, then x0+y is also a solution:

A(x0+y) =Ax0+Ay = b+0 = b .

Due to the uniqueness of x0, we know that ker(A) only contains the zero vector, i.e., dim(ker(A))=0.
But from the dimension theorem of linear algebra we know that dim(ker(A))=n−dim(col(A)), thus:

n−dim(col(A)) = 0 ⇒ dim(col(A)) =n ,

and consequently A has full rank n and m≥n.
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In practice, however, we do not always have a well-posed system to solve (see the example in the
next section). To this end, people define instead the next least squares problem for any A∈Rm×n
and b∈Rm:

min
x∈Rn

||Ax−b||2 . (1.3)

Note that this problem always has at least one solution1; but the solution may not be unique.
Particularly, if x0 minimize the residual then x0 +y also minimize the residual for all y ∈ ker(A).
Thus the least squares problem (1.3) is always solvable, but not necessarily well-posed. A well-posed
extension is presented at the end of this lecture.

Theorem 1.1. x solves the least squares problem (1.3) if and only if it solves the normal equation:

AtAx=Atb . (1.4)

This equation always has a solution, and the solution is unique if and only if the columns of A are
linearly independent (i.e., dim(col(A)) = rank(A) =n≤m).

Proof. The first statement can be obtained as a consequence of the stationary condition for min-
imizing the convex quadratic form φ(x) = (Ax−b)t(Ax−b), that is, ∇φ(x) = 0. Here we instead
use a more direct approach. Let x solve the normal equation and let e∈Rn be arbitrary, then:

||A(x+e)−b||2 = (Ax−b−Ae)t(Ax−b−Ae) = ||Ax−b||2+ ||Ae||2−2et(AtAx−Atb)

= ||Ax−b||2+ ||Ae||2≥ ||Ax−b||2 ,

and due to the arbitrary choice of e, the same x solves the least squares problem. Conversely if x
solves (1.3) we define d=AtAx−Atb, then for all e∈Rn we have:

0≤ ||A(x+e)−b||2−||Ax−b||2 = ||Ae||2−2etd .

With the particular choice e=−αd, we have for all α> 0:

0≤α2||Ad||2−2α||d||2 ⇒ 0≤α||Ad||2−2||d||2 .

Letting α→ 0, we have 2||d||2≤ 0 or d= 0, i.e., x solves the normal equation.

For the second part, clearly we just need to show that the normal equation always has a solution.
Indeed, due to Appendix A the column spaces of At and AtA are the identical. Hence for all b∈Rm,
we have:

Atb∈ col(At) = col(AtA) ,

or there exists an x∈Rn such that Atb=AtAx.

To this end, the problem of solving the least squares problem is equivalent to solving the normal
equation, which we will discuss in more detail in the next lectures.

1An elegant proof can be obtained by the following result of real analysis: Any continuous function defined on a
compact set K ⊂Rn achieves its minimum and maximum on the set K.
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2 Example: Polynomial Regression

An important application of the least squares problem is to find a polynomial fit of scattered data.
Let our data set be:

D= {(xi,yi) : xi , yi ∈R , i= 1,···,n} . (2.1)

The target is to find a function f :R 7→R, such that:

yi≈ f(xi) , ∀1≤ i≤n .

In polynomial regression, we search for a polynomial of degree m:

pm(x) = amx
m+am−1x

m−1+ ···+a1x+a0 , (2.2)

so that the L2-norm of the difference vector z= [zi]∈Rn , zi= yi−pm(xi) is minimized. Note that:

zi = yi−pm(xi) = yi−
m∑
k=0

akx
k
i , 1≤ i≤n ,

we may write z in the matrix form:
z =y−Vm(x)a , (2.3)

where a= [ak]∈Rm+1 and Vm(x)∈Rn×(m+1) is the Vandermonde matrix:

Vm(x) =


1 x1 x21 ··· xm1
1 x2 x22 ··· xm2
...

...
...

...
...

1 xn x2n ··· xmn


n×(m+1)

. (2.4)

Then the problem of polynomial fitting, i.e., finding the coefficient vector a, reduces to the least
squares problem:

a= arg min
a′∈Rm+1

∣∣∣∣Vm(x)a′−y
∣∣∣∣ . (2.5)

The existence of a solution (and hence pm) is shown by Theorem 1.1, furthermore, if xi 6= xj for
all i 6= j and n≥m+1, the solution is unique. Due to the same theorem, we just need to show
that if all xi’s are different from each other, Vm(x) has full rank; the latter is the consequence of a
special case – when m+1 =n and all xi’s are different, Vm(x) is non-singular. In fact, one can use
induction to show that if m+1 =n, then:

detVm(x) =
∏

1≤i<j≤n
(xj−xi) 6= 0 . (2.6)

Hence we deduce that when all the data points xi are different, there is always a unique fit using
the polynomial of any degree m.
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3 Pseudoinverse

Lastly, we briefly discuss a well-posed problem for general matrix A∈Rm×n:

x= argmin
x′∈S

∣∣∣∣x′∣∣∣∣ , S = {x′ ∈Rn :
∣∣∣∣Ax′−b

∣∣∣∣= min
y∈Rn

||Ay−b||} . (3.1)

That is to say, we want to find the least squares solution with the smallest L2-norm. Its existence is
obtained similarly to the footnote before Theorem 1.1. To show the uniqueness, we need a lemma:
if y1,y2 ∈ Rn such that ||y1||= ||y2||, then ||(y1+y2)/2|| ≤ ||y1||; and the identity holds only if
y1 =y2. This is a direct consequence of the parallelogram identity:

2||y1||
2+2||y2||

2 = ||y1+y2||
2+ ||y1−y2||

2 . (3.2)

Now if both x1 and x2 are solutions to (3.1), we must have ||x1||= ||x2||. Furthermore, x1,x2 ∈S
indicates

||Ax1−b||= ||Ax2−b|| .
By the previous lemma

||A((x1+x2)/2)−b|| ≤ ||Ax1−b|| ⇒ 1

2
(x1+x2)∈S .

Invoking the lemma again, we have:

||(x1+x2)/2|| ≤ ||x1|| ,

and by the assumption we must have the identity hold, i.e., x1 =x2. We thusly conclude that the
solution to (3.1) is unique.

Now we deviate ourselves from the numerical techniques and look at the analytical solution.
Let A=UΣV be the singular value decomposition (SVD) of A, where U ∈Rm×m and V ∈Rn×n are
orthogonal matrices, Σ∈Rm×n is diagonal in the sense that only the (i,i)-th components of Σ are
(possibly) nonzero, where 1≤ i≤min(m,n). In addition, denoting the (i,i)-th component of Σ by
σi we have:

σ1≥σ2≥ ···≥σk≥ 0 , where k= min(m,n) . (3.3)

Using the SVD of A and noting the fact that pre-multiplying by an orthogonal matrix preserves
the L2-norm, (3.1) is equivalent to:

y = arg min
y′∈S′

∣∣∣∣y′∣∣∣∣ , S ′= {y′ ∈Rn :
∣∣∣∣Σy′−U tb

∣∣∣∣= min
z∈Rn

∣∣∣∣Σz−U tb
∣∣∣∣} ,

where the solution y is related to the solution x of (3.1) by y = V x. The members of S ′ have
a surprisingly simple structure as the m equations are decoupled from each other. In particular,
y′= [y′i]∈S ′ is given by: {

y′i = 1
σi

[U tb]i , if σi 6= 0 ;

y′i is arbitrary , if i> k or σi = 0 .

Clearly the solution is given by setting all y′i in the second line to be zero. The final result can be
written as:

x=V ty =V tΣ+U tb ,

where Σ+ ∈ Rn×m has a similar structure as Σt, where every nonzero σi is replaced by 1/σi.

A+ def
==V tΣ+U t is known as the pseudoinverse of the matrix A.
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Exercises

Exercise 1. Show that if we want to fit the data set (2.1) such that xi 6= xj , ∀i 6= j by a constant
function, that is, a polynomial of degree zero, this function is given by the arithmetic average of all
yi’s.

Exercise 2. Verify (2.6) for the case m+1 =n= 4. That is, show that:

det


1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
1 x4 x24 x34

= (x4−x3)(x4−x2)(x4−x1)(x3−x2)(x3−x1)(x2−x1) .

Exercise 3. Compute the pseudoinverse of the following 3×2 matrix A:

A=

 2
√

2 2
√

2
−1 1
1 −1

 .
You may use any software to compute the SVD decomposition of A.

A Show that col(AtA)= col(A) for any A∈Rm×n

Let A1 = col(A) and A2 = col(AtA), then we have:

A2 = {AtAx : x∈Rn} ⊆ {Aty : y ∈Rm}=A1 .

Thus A⊥1 ⊆A⊥2 . In fact, by the definition of orthogonal complement. Indeed:

u∈A⊥1 ⇒ u ·v = 0 , ∀ v ∈A1 ⇒ u ·v = 0 , ∀ v ∈A2 ⇒ u∈A⊥2 .

However, we can also show A⊥2 ⊆A⊥1 as follows:

u∈A⊥2 ⇒ utAtA= 0 ⇒ ||Au||2 =utAtAu= 0 ⇒ utAt = 0 ⇒ u∈A⊥1 .

Thus A⊥1 =A⊥2 and A1 = (A⊥1 )⊥= (A⊥2 )⊥=A2
2.

As a corollary, if A has full column rank (i.e., rank(A) =n) then AtA is non-singular.

2Check that for all subspace V of Rn, (V⊥)⊥ =V.
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