MATH 5330: Computational Methods of Linear Algebra

Lecture Note 8: Linear Least Squares Problem

Xianyi Zeng

Department of Mathematical Sciences, UTEP

1 From Linear System to Least Squares

In previous sections we solve the linear system $A\mathbf{x} = \mathbf{b}$ when A is square and non-singular. In the more general case, the problem is not mathematically well-posed. Let A be any $n \times n$ matrix, but det A = 0, then the system $A\mathbf{x} = \mathbf{b}$:

- Has no solution if $\boldsymbol{b} \notin \operatorname{col}(A)$.
- Has infinite number of solutions if $b \in col(A)$.

Here col(A) is the column space of A:

$$\operatorname{col}(A) = \operatorname{span}(\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_n), \qquad (1.1)$$

where a_i , $i = 1, \dots, n$ are the column vectors of A: $A = [a_1 \ a_2 \ \dots \ a_n]$.

In a more general case let $A \in \mathbb{R}^{m \times n}$ be any matrix, then $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} \in \mathbb{R}^m$ has at least one solution $\mathbf{x} \in \mathbb{R}^n$ if and only if $\mathbf{b} \in \operatorname{col}(A)$. In particular, if $\mathbf{b} \in \operatorname{col}(A)$:

- The solution is unique if and only if $n \le m$ and $\operatorname{rank}(A) = n$, or equivalently $\dim(\operatorname{col}(A)) = n$.
- There are infinite number of solutions in all other situations.

We'll briefly prove the first statement:

Proof. If $n \leq m$ and rank(A) = n, then $A^t A \in \mathbb{R}^{n \times n}$ is non-singular (see Appendix A). Let \boldsymbol{x} be any vector that satisfies $A\boldsymbol{x} = \boldsymbol{b}$, then:

$$(A^tA)\boldsymbol{x} = A^t(A\boldsymbol{x}) = A^t\boldsymbol{b},$$

or equivalently:

$$\boldsymbol{x} = (A^t A)^{-1} A^t \boldsymbol{b} \,, \tag{1.2}$$

which demonstrates the uniqueness.

Conversely, we suppose $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x}_0 \in \mathbb{R}^n$. Let $\mathbf{y} \in \ker(A)$, the null space of A, then $\mathbf{x}_0 + \mathbf{y}$ is also a solution:

$$A(\boldsymbol{x}_0 + \boldsymbol{y}) = A\boldsymbol{x}_0 + A\boldsymbol{y} = \boldsymbol{b} + 0 = \boldsymbol{b}.$$

Due to the uniqueness of x_0 , we know that ker(A) only contains the zero vector, i.e., dim(ker(A))=0. But from the *dimension theorem* of linear algebra we know that dim(ker(A))= $n-\dim(\operatorname{col}(A))$, thus:

$$n - \dim(\operatorname{col}(A)) = 0 \quad \Rightarrow \quad \dim(\operatorname{col}(A)) = n$$

and consequently A has full rank n and $m \ge n$.

In practice, however, we do not always have a well-posed system to solve (see the example in the next section). To this end, people define instead the next least squares problem for any $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$:

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} ||A\boldsymbol{x}-\boldsymbol{b}||_2.$$
(1.3)

Note that this problem always has at least one solution¹; but the solution may not be unique. Particularly, if \boldsymbol{x}_0 minimize the residual then $\boldsymbol{x}_0 + \boldsymbol{y}$ also minimize the residual for all $\boldsymbol{y} \in \ker(A)$. Thus the least squares problem (1.3) is always *solvable*, but not necessarily well-posed. A well-posed extension is presented at the end of this lecture.

Theorem 1.1. x solves the least squares problem (1.3) if and only if it solves the normal equation:

$$A^t A \boldsymbol{x} = A^t \boldsymbol{b} \,. \tag{1.4}$$

This equation always has a solution, and the solution is unique if and only if the columns of A are linearly independent (i.e., $\dim(\operatorname{col}(A)) = \operatorname{rank}(A) = n \leq m$).

Proof. The first statement can be obtained as a consequence of the stationary condition for minimizing the convex quadratic form $\phi(\boldsymbol{x}) = (A\boldsymbol{x} - \boldsymbol{b})^t (A\boldsymbol{x} - \boldsymbol{b})$, that is, $\nabla \phi(\boldsymbol{x}) = 0$. Here we instead use a more direct approach. Let \boldsymbol{x} solve the normal equation and let $\boldsymbol{e} \in \mathbb{R}^n$ be arbitrary, then:

$$\begin{aligned} ||A(x+e) - b||^2 &= (Ax - b - Ae)^t (Ax - b - Ae) = ||Ax - b||^2 + ||Ae||^2 - 2e^t (A^t Ax - A^t b) \\ &= ||Ax - b||^2 + ||Ae||^2 \ge ||Ax - b||^2, \end{aligned}$$

and due to the arbitrary choice of e, the same x solves the least squares problem. Conversely if x solves (1.3) we define $d = A^t A x - A^t b$, then for all $e \in \mathbb{R}^n$ we have:

$$0 \le ||A(x+e) - b||^2 - ||Ax - b||^2 = ||Ae||^2 - 2e^t d.$$

With the particular choice $\boldsymbol{e} = -\alpha \boldsymbol{d}$, we have for all $\alpha > 0$:

$$0 \le \alpha^2 ||A\boldsymbol{d}||^2 - 2\alpha ||\boldsymbol{d}||^2 \quad \Rightarrow \quad 0 \le \alpha ||A\boldsymbol{d}||^2 - 2||\boldsymbol{d}||^2.$$

Letting $\alpha \to 0$, we have $2||\boldsymbol{d}||^2 \leq 0$ or $\boldsymbol{d} = 0$, i.e., \boldsymbol{x} solves the normal equation.

For the second part, clearly we just need to show that the normal equation always has a solution. Indeed, due to Appendix A the column spaces of A^t and A^tA are the identical. Hence for all $\boldsymbol{b} \in \mathbb{R}^m$, we have:

$$A^t \boldsymbol{b} \in \operatorname{col}(A^t) = \operatorname{col}(A^t A)$$

or there exists an $\boldsymbol{x} \in \mathbb{R}^n$ such that $A^t \boldsymbol{b} = A^t A \boldsymbol{x}$.

To this end, the problem of solving the least squares problem is equivalent to solving the normal equation, which we will discuss in more detail in the next lectures.

¹An elegant proof can be obtained by the following result of real analysis: Any continuous function defined on a compact set $K \subset \mathbb{R}^n$ achieves its minimum and maximum on the set K.

2 Example: Polynomial Regression

An important application of the least squares problem is to find a polynomial fit of scattered data. Let our data set be:

$$\mathcal{D} = \{ (x_i, y_i) : x_i, y_i \in \mathbb{R}, i = 1, \cdots, n \}.$$
(2.1)

The target is to find a function $f : \mathbb{R} \mapsto \mathbb{R}$, such that:

$$y_i \approx f(x_i), \forall 1 \leq i \leq n$$
.

In polynomial regression, we search for a polynomial of degree m:

$$p_m(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0, \qquad (2.2)$$

so that the L²-norm of the difference vector $\boldsymbol{z} = [z_i] \in \mathbb{R}^n$, $z_i = y_i - p_m(x_i)$ is minimized. Note that:

$$z_i = y_i - p_m(x_i) = y_i - \sum_{k=0}^m a_k x_i^k, \quad 1 \le i \le n$$

we may write \boldsymbol{z} in the matrix form:

$$\boldsymbol{z} = \boldsymbol{y} - V_m(\boldsymbol{x})\boldsymbol{a} \,, \tag{2.3}$$

where $\boldsymbol{a} = [a_k] \in \mathbb{R}^{m+1}$ and $V_m(\boldsymbol{x}) \in \mathbb{R}^{n \times (m+1)}$ is the Vandermonde matrix:

$$V_m(\boldsymbol{x}) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^m \\ 1 & x_2 & x_2^2 & \cdots & x_2^m \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^m \end{bmatrix}_{n \times (m+1)} .$$
 (2.4)

Then the problem of polynomial fitting, i.e., finding the coefficient vector \boldsymbol{a} , reduces to the least squares problem:

$$\boldsymbol{a} = \arg\min_{\boldsymbol{a}' \in \mathbb{R}^{m+1}} \left| \left| V_m(\boldsymbol{x}) \boldsymbol{a}' - \boldsymbol{y} \right| \right|.$$
(2.5)

The existence of a solution (and hence p_m) is shown by Theorem 1.1, furthermore, if $x_i \neq x_j$ for all $i \neq j$ and $n \geq m+1$, the solution is unique. Due to the same theorem, we just need to show that if all x_i 's are different from each other, $V_m(\boldsymbol{x})$ has full rank; the latter is the consequence of a special case – when m+1=n and all x_i 's are different, $V_m(\boldsymbol{x})$ is non-singular. In fact, one can use induction to show that if m+1=n, then:

$$\det V_m(\boldsymbol{x}) = \prod_{1 \le i < j \le n} (x_j - x_i) \neq 0.$$
(2.6)

Hence we deduce that when all the data points x_i are different, there is always a unique fit using the polynomial of any degree m.

3 Pseudoinverse

Lastly, we briefly discuss a well-posed problem for general matrix $A \in \mathbb{R}^{m \times n}$:

$$\boldsymbol{x} = \arg\min_{\boldsymbol{x}' \in \mathcal{S}} ||\boldsymbol{x}'||, \quad \mathcal{S} = \{\boldsymbol{x}' \in \mathbb{R}^n : ||A\boldsymbol{x}' - \boldsymbol{b}|| = \min_{\boldsymbol{y} \in \mathbb{R}^n} ||A\boldsymbol{y} - \boldsymbol{b}||\}.$$
(3.1)

That is to say, we want to find the least squares solution with the smallest L^2 -norm. Its existence is obtained similarly to the footnote before Theorem 1.1. To show the uniqueness, we need a lemma: if $y_1, y_2 \in \mathbb{R}^n$ such that $||y_1|| = ||y_2||$, then $||(y_1 + y_2)/2|| \leq ||y_1||$; and the identity holds only if $y_1 = y_2$. This is a direct consequence of the parallelogram identity:

$$2||\boldsymbol{y}_1||^2 + 2||\boldsymbol{y}_2||^2 = ||\boldsymbol{y}_1 + \boldsymbol{y}_2||^2 + ||\boldsymbol{y}_1 - \boldsymbol{y}_2||^2.$$
(3.2)

Now if both x_1 and x_2 are solutions to (3.1), we must have $||x_1|| = ||x_2||$. Furthermore, $x_1, x_2 \in S$ indicates

$$||Ax_1 - b|| = ||Ax_2 - b||$$

By the previous lemma

$$||A((\boldsymbol{x}_1+\boldsymbol{x}_2)/2)-\boldsymbol{b}|| \leq ||A\boldsymbol{x}_1-\boldsymbol{b}|| \quad \Rightarrow \quad \frac{1}{2}(\boldsymbol{x}_1+\boldsymbol{x}_2) \in \mathcal{S}.$$

Invoking the lemma again, we have:

$$||(\boldsymbol{x}_1 + \boldsymbol{x}_2)/2|| \le ||\boldsymbol{x}_1||$$

and by the assumption we must have the identity hold, i.e., $x_1 = x_2$. We thusly conclude that the solution to (3.1) is unique.

Now we deviate ourselves from the numerical techniques and look at the analytical solution. Let $A = U\Sigma V$ be the singular value decomposition (SVD) of A, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal in the sense that only the (i,i)-th components of Σ are (possibly) nonzero, where $1 \leq i \leq \min(m,n)$. In addition, denoting the (i,i)-th component of Σ by σ_i we have:

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_k \ge 0$$
, where $k = \min(m, n)$. (3.3)

Using the SVD of A and noting the fact that pre-multiplying by an orthogonal matrix preserves the L^2 -norm, (3.1) is equivalent to:

$$\boldsymbol{y} = \arg\min_{\boldsymbol{y}' \in \mathcal{S}'} ||\boldsymbol{y}'||, \quad \mathcal{S}' = \{\boldsymbol{y}' \in \mathbb{R}^n : ||\boldsymbol{\Sigma}\boldsymbol{y}' - \boldsymbol{U}^t \boldsymbol{b}|| = \min_{\boldsymbol{z} \in \mathbb{R}^n} ||\boldsymbol{\Sigma}\boldsymbol{z} - \boldsymbol{U}^t \boldsymbol{b}||\},$$

where the solution \boldsymbol{y} is related to the solution \boldsymbol{x} of (3.1) by $\boldsymbol{y} = V\boldsymbol{x}$. The members of \mathcal{S}' have a surprisingly simple structure as the *m* equations are decoupled from each other. In particular, $\boldsymbol{y}' = [y'_i] \in \mathcal{S}'$ is given by:

$$\begin{cases} y'_i = \frac{1}{\sigma_i} [U^t \boldsymbol{b}]_i, & \text{if } \sigma_i \neq 0; \\ y'_i \text{ is arbitrary}, & \text{if } i > k \text{ or } \sigma_i = 0 \end{cases}$$

Clearly the solution is given by setting all y'_i in the second line to be zero. The final result can be written as:

$$\boldsymbol{x} = V^t \boldsymbol{y} = V^t \Sigma^+ U^t \boldsymbol{b}$$

where $\Sigma^+ \in \mathbb{R}^{n \times m}$ has a similar structure as Σ^t , where every nonzero σ_i is replaced by $1/\sigma_i$. $A^+ \stackrel{\text{def}}{=} V^t \Sigma^+ U^t$ is known as the pseudoinverse of the matrix A.

Exercises

Exercise 1. Show that if we want to fit the data set (2.1) such that $x_i \neq x_j$, $\forall i \neq j$ by a constant function, that is, a polynomial of degree zero, this function is given by the arithmetic average of all y_i 's.

Exercise 2. Verify (2.6) for the case m+1=n=4. That is, show that:

$$\det \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{bmatrix} = (x_4 - x_3)(x_4 - x_2)(x_4 - x_1)(x_3 - x_2)(x_3 - x_1)(x_2 - x_1)$$

Exercise 3. Compute the pseudoinverse of the following 3×2 matrix A:

$$A = \begin{bmatrix} 2\sqrt{2} & 2\sqrt{2} \\ -1 & 1 \\ 1 & -1 \end{bmatrix}.$$

You may use any software to compute the SVD decomposition of A.

A Show that $col(A^tA) = col(A)$ for any $A \in \mathbb{R}^{m \times n}$

Let $\mathcal{A}_1 = \operatorname{col}(A)$ and $\mathcal{A}_2 = \operatorname{col}(A^t A)$, then we have:

$$\mathcal{A}_2 = \{A^t A oldsymbol{x} : oldsymbol{x} \in \mathbb{R}^n\} \subseteq \{A^t oldsymbol{y} : oldsymbol{y} \in \mathbb{R}^m\} = \mathcal{A}_1.$$

Thus $\mathcal{A}_1^{\perp} \subseteq \mathcal{A}_2^{\perp}$. In fact, by the definition of orthogonal complement. Indeed:

$$\boldsymbol{u} \in \mathcal{A}_1^{\perp} \Rightarrow \boldsymbol{u} \cdot \boldsymbol{v} = 0, \forall \boldsymbol{v} \in \mathcal{A}_1 \Rightarrow \boldsymbol{u} \cdot \boldsymbol{v} = 0, \forall \boldsymbol{v} \in \mathcal{A}_2 \Rightarrow \boldsymbol{u} \in \mathcal{A}_2^{\perp}.$$

However, we can also show $\mathcal{A}_2^{\perp} \subseteq \mathcal{A}_1^{\perp}$ as follows:

$$\boldsymbol{u} \in \mathcal{A}_{2}^{\perp} \Rightarrow \boldsymbol{u}^{t} A^{t} A = 0 \Rightarrow ||A\boldsymbol{u}||^{2} = \boldsymbol{u}^{t} A^{t} A \boldsymbol{u} = 0 \Rightarrow \boldsymbol{u}^{t} A^{t} = 0 \Rightarrow \boldsymbol{u} \in \mathcal{A}_{1}^{\perp}.$$

Thus $\mathcal{A}_1^{\perp} = \mathcal{A}_2^{\perp}$ and $\mathcal{A}_1 = (\mathcal{A}_1^{\perp})^{\perp} = (\mathcal{A}_2^{\perp})^{\perp} = \mathcal{A}_2^2$.

As a corollary, if A has full column rank (i.e., $\operatorname{rank}(A) = n$) then $A^{t}A$ is non-singular.

²Check that for all subspace \mathcal{V} of \mathbb{R}^n , $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$.