
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 9: Orthogonal Reduction

Xianyi Zeng

Department of Mathematical Sciences, UTEP

1 The Row Echelon Form

Our target is to solve the normal equation:

AtAx=At
b , (1.1)

where A2Rm⇥n is arbitrary; we have shown previously that this is equivalent to the least squares
problem:

min
x2Rn

||Ax�b|| . (1.2)

A first observation we can make is that (1.1) seems familiar! As AtA 2 Rn⇥n is symmetric
semi-positive definite, we can try to compute the Cholesky decomposition such that AtA=LtL for
some lower-triangular matrix L 2Rn⇥n. One problem with this approach is that we’re not fully
exploring our information, particularly in Cholesky decomposition we treat AtA as a single entity
in ignorance of the information about A itself.

Particularly, the structure AtA motivates us to study a factorization A=QE, where Q2Rm⇥m

is orthogonal and E 2Rm⇥n is to be determined. Then we may transform the normal equation to:

EtEx=EtQt
b , (1.3)

where the identity QtQ = Im (the identity matrix in Rm⇥m) is used. This normal equation is
equivalent to the least squares problem with E:

min
x2Rn

����Ex�Qt
b

���� . (1.4)

Because orthogonal transformation preserves the L2-norm, (1.2) and (1.4) are equivalent to each
other. Indeed, for any x2Rn:

||Ax�b||2=(b�Ax)t(b�Ax)= (b�QEx)t(b�QEx)= [Q(Qt
b�Ex)]t[Q(Qt

b�Ex)]

= (Qt
b�Ex)tQtQ(Qt

b�Ex)= (Qt
b�Ex)t(Qt

b�Ex)=
����Ex�Qt

b

����2 .

Hence the target is to find an E such that (1.3) is easier to solve. Motivated by the Cholesky
decomposition, we’d like to find an E with a structure similar to the upper-triangular matrices.

To this end, we say that E 2Rm⇥n is of the row echelon form defined below.

Definition 1. Let E=[eij]2Rm⇥n
be arbitrary, we define for each row number 1 im a positive

number ni such that eini 6=0 and eij=0 for all j<ni. If the entire i-th row is zero, we set ni=n+1.
Then the matrix E is said to have the row echelon form if and only if the sequence {n1,n2,···,nm}
is strictly increasing until it reaches and stays at the value n+1.

1

Graphically, such a matrix looks like:

E=

2

66666664

⇤ ⇤ ⇤ ⇤ ··· ⇤ ⇤ ⇤ ⇤ ⇤
0 ⇤ ⇤ ⇤ ··· ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 ⇤ ··· ⇤ ⇤ ⇤ ⇤ ⇤
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 ··· 0 ⇤ ⇤ ⇤ ⇤
0 0 0 0 ··· 0 0 0 0 ⇤

3

77777775

. (1.5)

We will see that for a matrix of row echelon form, the least squares problem (1.4) is easy to solve.
Let d=Qt

b, then the residual vector is given by:

Ex�d=

2

66666666664

e1n1xn1 +e1,n1+1xn1+1+ ···+e1nxn�d1
e2n2xn2 +e2,n2+1xn2+1+ ···+e2nxn�d2

...
elnl

xnl +el,nl+1xnl+1+ ···+elnxn�dl
�dl+1

...
�dm

3

77777777775

,

where l is the last non-zero row of E. Note that except for the first term, all other components of
the residual are independent of xn1 ; hence we must have:

xn1 =
1

e1n1

0

@d1�
nX

j=n1+1

e1jxj

1

A . (1.6)

Similarly, if l� 2 we have e2n2 6=0 and we deduce:

xn2 =
1

e2n2

0

@d2�
nX

j=n2+1

e2jxj

1

A . (1.7)

We can continue on, and eventually reach for all 1 k l:

xnk =
1

eknk

0

@dk�
nX

j=nk+1

ekjxj

1

A . (1.8)

Hence the solution to the least squares problem (1.4) can be computed as follows:

1. Choose xi, i /2 {n1,···,nl} arbitrarily (for example, zero).

2. Use (1.8) to compute xnl , xnl�1 , ···, xn1 recursively.

Meanwhile, we reduce the problem to find a factorization A=QE such that Q is orthogonal and
E is of the row echelon form.

2

2 Givens Rotation

A basic tool to find the factorization A=QE is to use Givens rotations. Let us consider a simple
example in R2:

O

x

Gx

✓
↵

x

y

x0

y0

Figure 1: Rotation by ✓ in R2.

Particularly, we want to rotate a vector x= [x, y]t by an angle ✓ counter-clockwise to a new
vector Gx= [x0, y0]t. According to Figure 1, we assume:

x= rcos↵ , y= rsin↵ ,

where r= ||x||= ||Gx||. Then the two coordinates of Gx are given by:

x0= rcos(↵+✓)= r(cos↵cos✓�sin↵sin✓)= cos✓x�sin✓y ,

y0= rsin(↵+✓)= r(sin↵cos✓+cos↵sin✓)= cos✓y+sin✓x .

Thus we conclude that the rotation matrix G is defined:

G=


cos✓ �sin✓
sin✓ cos✓

�
. (2.1)

In multiple dimensions, we consider the rotations that keep all but two coordinates constant.
In R3, these operations are those rotate about one of the three axises. Particularly, let the indices
for the two modified coordinates be i and j, then the rotation by an angle ✓ is equivalent to
pre-multiplication with the Givens matrix Gi,j(✓).

Gi,j(✓)=

2

666666666664

1 ··· 0 ··· 0 ··· 0
...
. . .

...
...

...
0 ··· cos(✓) ··· �sin(✓) ··· 0
...

...
. . .

...
...

0 ··· sin(✓) ··· cos(✓) ··· 0
...

...
...

. . .
...

0 ··· 0 ··· 0 ··· 1

3

777777777775

. (2.2)

All Givens matrices are orthogonal.

3

3 Orthogonal Reduction by Givens Rotations

The idea here is to apply a sequence of Givens rotations to the left of A so that the latter is
transformed into the row echelon form. We’ve learned from the process of Gaussian elimination
that left multiplication indicates row manipulations; and we see more familiarities between the
orthogonal reduction procedure here and the Gaussian elimination. That is, the last elements of
a column of A are transformed to zeroes by row operations. The tool of choice is lower-triangular
matrices for the Gaussian elimination, whereas it is orthogonal matrices (or more specifically the
product of a sequence of Givens matrices) in the current situation.

First we look at the product G1,2(✓)A, where ✓ is a number to be determined. Denote the i-th
row of A by a

t
i, 1 im, and we denote the i-th column of a generic matrix M by [M]i, then:

G1,2(✓)A=

2

666664

cos✓at
1�sin✓at

2

sin✓at
1+cos✓at

2

a

t
3
...

a

t
m

3

777775
) [G1,2(✓)A]1=

2

666664

cos✓a11�sin✓a21
sin✓a11+cos✓a21

a31
...

am1

3

777775
.

Note that all the rows except for the first two ones are not changed at all. We may choose ✓ such
that sin✓a11+cos✓a21=0, or equivalently:

✓=arctan

✓
�a21
a11

◆
, (3.1)

and the (2,1)-element of G1,2(✓)A becomes zero. The advantage of the Givens transformation over
the Gaussian elimination is that (3.1) is well-defined even when a11=0, in which case ✓=⇡/2 and

G1,2(✓) can still be computed. We shall denote this particular Givens matrix by G
(1)
1,2.

Another fact we notice after the rotation is that the L2-norm of the first column of A is not
changed. Particularly, note that if a211+a221 6=0, there is:

sin✓=� a21p
a211+a221

, cos✓=
a11p

a211+a221
;

and we have:

[A]1 7! [G(1)
1,2A]1 is given by

2

666664

a11
a21
a31
...

am1

3

777775
7!

2

666664

p
a211+a221

0
a31
...

am1

3

777775
.

It is easy to check that in the special situation a211+a221=0, the previous statement remains true.
Preserving the L2-norm of the first column vector is actually true for all ✓ (and can be derived

from the L2-norm preserving property of any orthogonal matrix); and particularly we see that the

4

L2-norm of all the column vectors of A remain the same after A 7!G
(1)
1,2A.

Next, we construct a Givens matrix G
(1)
1,3 that will make the (3,1)-element of G(1)

1,2A zero:

[A]1 7! [G(1)
1,3G

(1)
1,2A]1 is given by

2

66666664

a11
a21
a31
a41
...

am1

3

77777775

7!

2

66666664

p
a211+a221+a231

0
0
a41
...

am1

3

77777775

.

The matrix G
(1)
1,3 is given by:

G
(1)
1,3=G1,3(✓) , where ✓=arctan

� a31p

a211+a221

!
.

As we continue, all the remaining non-zeroes in the first column of A can be eliminated. Eventually
we obtain a sequence of Givens matrices and define their product as G1:

G1=G
(1)
1,mG

(1)
1,m�1···G

(1)
1,2 , (3.2)

so that:

[A]1 7! [G1A]1 is given by

2

6664

a11
a21
...

am1

3

7775
7!

2

6664

p
a211+a221+ ···+a2m1

0
...
0

3

7775
.

Let us denote A(1) =G1A, then the first column of A(1) is exactly what we want for E; and if

a
(1)
11 =

p
a211+ ···+a2m1 6=0, we have n1=1.

The next step is to use Givens rotations to eliminate as many non-zeroes elements of the second

column of A(1) as possible. If a(1)11 =0, this process is the same as what we did before for the first

column of A; but if a(1)11 6= 0, we want to leave the first row of A(1) untouched! Particularly, we
construct a sequence of Givens matrices and define G2 as their products:

G2=

(
G

(2)
2,mG

(2)
2,m�1···G

(2)
2,3 , if a(1)11 6=0 ;

G
(2)
1,mG

(2)
1,m�1···G

(2)
1,2 , if a(1)11 =0 .

(3.3)

5

such that:

[A(1)]2 7! [G2A
(1)]2 is given by

2

6666664

a
(1)
12

a
(2)
22

a
(2)
23
...

a
(m)
m2

3

7777775
7!

2

6666664

a
(1)
21q

(a(1)22)
2+(a(1)32)

2+ ···+(a(1)m2)
2

0
...
0

3

7777775
, if a(1)11 6=0 ;

or

2

66664

a
(1)
12

a
(2)
22
...

a
(m)
m2

3

77775
7!

2

66664

q
(a(1)21)

2+(a(1)22)
2+ ···+(a(1)m2)

2

0
...
0

3

77775
, if a(1)11 =0 .

Continuing this process, we obtain orthogonal m⇥m matrices G1, G2, ···, and Gn such that:

GnGn�1···G1A=E , (3.4)

where E is of the row echelon form. Defining Q=(GnGn�1···G1)t we obtain the desired factorization
A=QE.

Now we write down the algorithm rigorously in Algorithm 3.1. Here we use an integer p to keep
track of the row number, below which the non-zero entries are transformed to zero.

Algorithm 3.1 Orthogonal Reduction by Givens Rotations
1: Set p=1 and Q= Im
2: for i=1,2,···,n do

3: for j= p+1,p+2,···,m do

4: if aji=0 then

5: Continue
6: end if

7: Compute ✓=arctan(�aji/api)
8: Compute A Gp,j(✓)A
9: Compute Q QGp,j(✓)t

10: end for

11: if api! = 0 then

12: Set p p+1
13: end if

14: end for

At the end of the algorithm, the matrix A is transformed into the row echelon form E. Note
that in the line 5, we do not have to actually compute ✓ from line 4 and form the matrix Gp,j(✓)
but instead compute and store:

cpj =
apiq

a2ji+a2pi

, spj =�
ajiq

a2ji+a2pi

;

6

and then compute for A:

⇢
ajk cpjajk�spjapk
apk spjajk+cpjajk

, k= i,i+1,···,n . (3.5)

Similarly for the line 6, if the matrix Q is not explicitly needed immediately, all we need to do is
to keep track of all pairs cpj and spj so that Q can be reconstructed later.

4 Analysis of Algorithm 3.1

The preceding factorization is more robust than the Gaussian elimination because we can obtain
an a priori estimate on all the components that may appear during the orthogonalization process.
In particular, whenever we apply the Givens rotation, the L2-norm of the column vectors are not
changed; hence we have:

mX

j=1

e2ji=
mX

j=1

a2ji) |eki|

vuut
mX

j=1

a2ji ,

for all i=1,···,n and k=1,···,m.
Next, we study the complexity of Algorithm 3.1. Note that in the outer loop, no computation

actually takes place if p is not increased at all. Thus the maximum possible computational cost
includes r =min(m,n) inner loops, which correspond to the value of p as p= 1, p= 2, ···, p= r,
respectively. For a given such p, the inner loop has m�p iterations. Each iteration contains (we
take the approach without computing ✓ explicitly) five flops and one square root operation to
compute cpj and spj . The operations (3.5) are thusly completed with 6(n� i+1) flops. Note that
we always have i� p, the total number of flops is thusly bounded as:

rX

p=1

mX

j=p+1

(5+6(n� i+1))
rX

p=1

mX

j=p+1

(5+6(n�p+1))

=
rX

p=1

[6(n�p)(m�p)+11(m�p)]⇠ 3mr(n�r)+3nr(m�r)+2r3 .

Finally, we improve the algorithm 3.1 in computer science considerations. Looking at each outer
loop, say the first one, we start to work on the row 1 and row 2, then on the row 1 and row 3,
and finally move on to row 1 and row m. The objective is to “rotate” all the non-zero entries of
the first column of A to the first element. If we take into memory storage into account, it is usual
practice to store the elements of a matrix A row by row (this can be true for both full matrices
and sparse matrices); hence we’re motivated to operate on adjacent rows as often as possible in
order to improve the bandwidth usage and reduce cache misses. Such a consideration results in
a “roll-back” algorithm to eliminate the non-zeros – we first work on the last two rows and make
the m-th element zero, then Givens rotation is applied to the rows m�2 and m�1 to make the
(m�1)-th element zero, and finally we reach the top of the column. This modification is reflected
in Algorithm 4.1. Note that we also incorporate the computations of c’s and s’s instead of ✓ in this
modified version.

7

Algorithm 4.1 Orthogonal Reduction by Givens Rotations (Modified)

1: Set p=1 and Q= Im
2: for i=1,2,···,n do

3: for j=m,m�1,···,p+1 do

4: if aji=0 then

5: Continue
6: end if

7: Compute cj�1,j = aj�1,i/
q

a2ji+a2j�1,i and sj�1,j =�aji/
q
a2ji+a2j�1,i

8: Compute A Gj�1,j(✓)A
9: Compute Q QGj�1,j(✓)t

10: end for

11: if api! = 0 then

12: Set p p+1
13: end if

14: end for

8

	The Row Echelon Form
	Givens Rotation
	Orthogonal Reduction by Givens Rotations
	Analysis of Algorithm 3.1

