
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 11: GMRES Revisited

Xianyi Zeng
Department of Mathematical Sciences, UTEP

1 Introduction

In the GMRES algorithm we described before, there are two parts at loose. Let us recap a little bit
over here. In the process of searching for the solution of Ax=b where A∈Rn×n is non-singular, we
start with a guess x0 and compute its residual r0 = b−Ax0. Let r0 6= 0, then the Krylov subspace
method searches for the m-th iteration a solution in the affine space:

xm ∈x0+Km , Km = span(r0,Ar0,···,Am−1r0) ,

so that the residual rm =b−Axm has the minimal L2-norm among all vectors in this affine space.
In the first step, we find an orthonormal basis of Km so long as the algorithm proceeds (i.e.,

dimKm =m):
Km = span(v1,v2,···,vm) ,

and see that there exists an m×(m+1) Hessenberg Hm such that:

AVm =Vm+1Hm =VmHm+hm+1,mvm+1e
t
m ,

where Hm is the m×m Hessenberg matrix that is composed of the first m rows of Hm.
The first loose part comes from the Arnoldi’s process that we used to find this orthonormal

basis; this algorithm is repeated here in Algorithm 1.1. Since Algorithm 1.1 is based on the Gram-
Schmidt process, it is numerically unstable – round-off errors may lead to non-orthogonal basis.
The first task of this lecture is to fix this issue by using the Householder transformation instead to
find the orthogonal basis.

Algorithm 1.1 The Arnoldi’s Algorithm

1: Compute r0 = b−Ax0 and v1 = r0/||r0||
2: for j= 1,···,m do
3: wj =Avj

4: for i= 1,···,j do
5: hij =wj ·vi

6: wj←wj−hijvi

7: end for
8: hj+1,j = ||wj ||
9: if hj+1,j = 0 then

10: Stop;
11: end if
12: vj+1 =wj/hj+1,j

13: end for

1

The second loose part come from the least-squares solver that is used a black box algorithm
before in finding xm in x0+Km. That is, suppose the basis Vm+1 and the Hessenberg matrix Hm

are constructed, we solve for the least-squares problem:

ym = arg min
y∈Rm

∣∣∣∣βe1−Hmy
∣∣∣∣ , (1.1)

and compute the next iterate:
xm =x0+Vmym .

Here β= ||r0|| and our second target is to use Givens rotations to derive a solver for (1.1).

2 Householder Arnoldi Algorithm

The result of the Arnoldi’s algorithm is:

AVm =Vm+1Hm ,

and we notice the first column of Vm+1 is v1 =β−1r0, hence we have:

[r0 AVm] =Vm+1Rm , (2.1)

where:

Rm =


β
0
...
0

Hm

=


β h11 ··· h1m
0 h21 ··· h2m
...

...
. . .

...
0 0 ··· hm+1,m

 .
Note that the column space of [r0 AVm] is exactlyKm+1 and (2.1) is its (reduced) QR decomposition.
If we were going to carry out the process until the end by using a sequence of Householder matrices
P1 , ··· , Pn

1 to reduce [r0 AVn−1] to upper-triangular form:

PnPn−1···P1[r0 AVn−1] =Rn−1 ,

we immediately see that:
Vn =P1P2···Pn ,

which provides us a way to compute the vectors vi gradually. For example, we’ll see that Pj will
keep the first j−1 rows unchanged, hence v1 is exactly P1e1 and v2 =P1P2e2, etc.

The Householder version of the Arnoldi’s algorithm builds on this process, and it is nothing but
applying the Householder transformations to compute the QR decomposition of [r0 AVm]. This is
provided in Algorithm 2.1.

1We use P instead to avoid confusion with the Hessenberg matrices H.

2

Algorithm 2.1 Householder Arnoldi

1: Compute z1 = r0
2: for j= 1,···,m+1 do
3: Compute the Householder unit vector wj such that
4: The first j−1 components of wj are zero
5: (I−2wjw

t
j)zj is a multiple of ej

6: Pj = I−2wjw
t
j

7: hj−1 =Pjzj

8: vj =P1P2···Pjej
9: if j≤m then

10: zj+1 =PjPj−1···P1Avj

11: end if
12: end for

It is not difficult to see that lines 3–5 is exactly the same as the Householder orthogonalization
we had in the previous lecture. To understand this algorithm, let us look at the first loop in which
the Householder matrix P1 is computed to transform z1 = r0 into h0 =βe1 ∈Rn:

P1r0 =βe1 =h0 ,

and following the a priori knowledge of the relations between v vectors and P matrices, we can
already compute:

v1 =P1e1 ,

as stated in line 8.
Now we move on to the second loop and compute P2, such that it essentially has the form:

P2 =

[
1 0
0 In−1−2w̃2w̃

t
2

]
,

where w̃2 is the last n−1 components (and also the non-zero components) of w2, so that

P2P1r0 =P2(βe1) =βe1 ,

and

P2P1Av1 =P2z2 =h1 =


h11
h21
0
...
0

 .
Similarly, the next orthonormal basis is constructed as v2 =P1P2e2. As a safety check, we have:

v1 ·v2 = (et1P1)(P1P2e2) = (P2e1P2)
te2 = et1e2 = 0 .

This process can be continued until we find the orthonormal basis of Km+1. For example, we can
check that vm is orthogonal to vj for j <m:

vj ·vm = (P1P2···Pjej)
t(P1P2···Pmem) = etj(Pj+1···Pmem) = (Pm···Pj+1ej)

tem = etjem = 0 .

3

3 Least-Squares with Hessenberg Matrices

Next suppose Hm is already computed and we want to solve the least-squares problem:

ym = arg min
y∈Rm

∣∣∣∣βe1−Hmy
∣∣∣∣ , (3.1)

here e1 is the first standard unit vector of Rm+1. We already learned that this is equivalent to
solving the normal equation:

H
t
mHmym =βH

t
me1 , (3.2)

and the idea is to reduce Hm to the row echelon form.
The two robust methods we’ve learned to achieve this are the Givens rotations and the House-

holder transforms. For general system the latter requires only two-thirds of the computational cost
of the former; but when we’re dealing with an Hessenberg matrix, only one rotation is needed to
reduce each column! Particularly, we first find the Givens rotation G1 ∈R(m+1)×(m+1) such that:

G1Hm =


c1 −s1
s1 c1

1
. . .

1




h11 h12 h13 ··· h1m
h21 h22 h23 ··· h2m
0 h32 h33 ··· h3m
...

...
...

. . .
...

0 0 0 ··· hm+1,m



=


h
(1)
11 h

(1)
12 h

(1)
13 ··· h

(1)
1m

0 h
(1)
22 h

(1)
23 ··· h

(1)
2m

0 h32 h33 ··· h3m
...

...
...

. . .
...

0 0 0 ··· hm+1,m

 ,

where

c1 =
h11√

h211+h221
, s1 =− h21√

h211+h221
.

From this point on, we define G2 such that G2G1Hm will eliminate h32, G3 such that G3G2G1Hm

eliminates h43, etc., until Gm such that Gm···G1Hm is an upper-tridiagonal matrix:

Gm···G1Hm =



h
(m)
11 h

(m)
12 h

(m)
13 ··· h(m)

1m

0 h
(m)
22 h

(m)
23 ··· h(m)

2m

0 0 h
(m)
33 ··· h(m)

3m
...

...
...

. . .
...

0 0 0 ··· h(m)
mm

0 0 0 ··· 0


def
==

[
H̃m

0t

]
, (3.3)

where H̃m is an m×m upper-tridiagonal matrix. If there were no round-off errors, the matrix Hm

generated by Algorithm 2.1 is exactly the same as that generated by Algorithm 1.1. Hence from
previous lectures we know that as long as the algorithm does not breakdown (i.e., hm+1,m 6=0), H̃m

will be non-singular, and we can find ym by solving:

H̃t
mH̃mym =β

[
H̃t

m 0
]
Gm···G1e1

4

or equivalently
H̃my =β

[
Im 0

]
Gm···G1e1 . (3.4)

This indicates that as we build up the Givens rotations, an additional vector g can be used to track
the right hand side of (3.4) by:

g =βe1 ; g←Gig , i= 1,···,m ,

and finally ym is H̃−1m times the first m components of g.

4 Householder GMRES

Now we have all the components that are needed to construct a robust GMRES algorithm. The last
technical pieces include keeping the memory usage small and incorporating the stopping criterion
in the process of constructing the orthonormal basis.

Combining the Householder Arnoldi algorithm and the least squares solves, there are several
variables whose quantity increases as the outer loop continues: the normal basis vj , the vectors
zj , the columns of the Hessenberg matrices hj , and the Householder matrices Pj or equivalently
the vectors wj . Among these, the z vectors are actually not carried from one iteration to the
next, and its memory usage can be limited to a single vector. Variables that are local to each
iteration include the Givens matrices Gj (or equivalently the two numbers sj and cj), and the
upper triangular matrix H̃m that is reduced from Hm.

There are a few measures that we can take to reduce the memory requirement:

• The Givens matrices can be constructed along with the Arnoldi process, as for example
computing G1 only requires information of two numbers of the first column of Hm, which is
the same for all m.

• The size of H̃m is almost the same as that of Hm, which can be significant as m becomes
large. However, we can always recover Hm from H̃m and the Givens rotations; hence it is
possible not to store Hm at all and only allocate spaces for H̃m.

• The orthonormal basis v’s and the Householder vectors w’s essentially keep the same infor-
mation, in the view of line 8 of Algorithm 1.1. Seeing that v’s are only used later to construct
the solution xm = x0 +Vmym, their storage can be eliminated if we can find an alternative
way to update x’s.

The resulting GMRES algorithm is given in Algorithm 4.1.

5

Algorithm 4.1 Householder GMRES with stopping criterion

1: Compute r0 = b−Ax0 and z = r0
2: Set a maximum iteration number m and allocate m×m matrix H̃m = [h̃ij]; set H̃m = 0
3: for j= 1,···,m,m+1 do
4: Compute the Householder vector wj such that:
5: The first j−1 components of wj are zero
6: (I−2wjw

t
j)z is a multiple of ej ∈Rn

7: Pj = I−2wjw
t
j

8: h=Pjz
9: if j= 1 then

10: Set β to the first component of h
11: g =βe1
12: else
13: h←Gj−2···G1h

14: Denoting h= [hi], compute sj−1 =− hj√
h2
j+h2

j−1

and cj−1 =
hj−1√
h2
j+h2

j−1

15: h̃j−1 =Gj−1h
16: g←Gj−1g
17: y = H̃−1j−1gj−1 and set u= 0
18: for i= j−1,···1 do
19: u←Pi(yiei+u)
20: end for
21: x=x0+u
22: if ||b−Ax|| ≤ ε then
23: Break
24: end if
25: end if
26: v =P1P2···Pjej
27: if j≤m then
28: z =PjPj−1···P1Av
29: end if
30: end for
31: Return x as the solution and any diagnostic signals

Here in line 17 H̃j is the upper-left j×j part of H̃m and gj is composed of the first j components
of g. Also, in line 19 the number yi is the i-th component of the vector y computed at line 17.
Furthermore, whenever Pj and Gj are encountered, it is understood that the matrices are not
actually formed; instead the information from wj and (sj , cj) are utilized. Lastly, G0 is taken to
be the identity matrix. The changes in Algorithm 4.1 that do not appear before are not difficult
to understand, for example:

• In line 8, the vector h is actually the column hj−1 of the matrix Hj ; but we do not carry
it to the next iteration and instead we compute in line 15 the (j−1)-th column of H̃j after
applying all the Givens rotations to h.

• We only keep one copy of the v vector and one copy of the z vector (line 26 and line 28), the

6

latter is carried on to the next iteration to compute the next h.

• The most significant change is in lines 18–21. To under stand this, we refer to the next
expansion:

x−x0 =Vj−1y = y1v1+y2v2+ ···+yj−1vj−1

= y1P1e1+y2P1P2e2+ ···+yj−1P1P2···Pj−1ej−1

=P1(y1e1+P2(y2e2+ ···+Pj−2(yj−2ej−2+Pj−1(yj−1ej−1)))) .

As a last comment, Algorithm 4.1 is usually combined with restarting or truncation techniques to
keep the size of H̃m small in practice.

Numerical Exercise

This exercise concerns the GMRES algorithm 4.1, and it is a continuation of the previous compu-
tational assignment. Implement this algorithm to solve the linear system Ax = b; the procedure
should take the following inputs:

• The matrix A.

• The right hand side b.

• The initial guess x0.

• The tolerance to stop the algorithm ε0.

• The maximum number of iterations m.

We will reuse the non-symmetric problem from the last time (“mat unsym A.txt”, “mat unsym M.txt”,
and “mat unsym b.txt”); and solve the linear system by using the CGS, BICGSTAB, and GMRES
and compare their performances. To fix the idea, let us choose ε0 = 1e−10 and you will decide a
reasonable maximum number of iteration m yourself.

1) Solve the pre-conditioned system MAx=Mb with the initial guess x0, and plot the L2-norm of
the residuals in log scale. The residual curves obtained from the three methods should be plotted
in the same figure.

2) Solve the original system Ax = b (no preconditioning) with the initial guess x0, and plot the
L2-norm of the residuals in log scale. The residual curves (if converges to zero) obtained from the
three methods should be plotted in the same figure.

For both parts, briefly discuss your results.

7

	Introduction
	Householder Arnoldi Algorithm
	Least-Squares with Hessenberg Matrices
	Householder GMRES

