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1 The Complex Schur Decomposition

If we want to find the matrices whose eigenvalues are easy to compute, diagonal ones must be on the
top of the list and the second one should be upper-triangular (or lower-triangular) matrices – the
eigenvalues are just the diagonal elements. In the Jacobi iteration method for symmetric matrices,
we try to reduce a real symmetric matrix A to a diagonal one by using Givens rotations. Extending
this strategy to general matrices requires the so called Schur decomposition: Let A ∈ Cn×n, the
Schur decomposition is defined as:

A=QUQ∗ , (1.1)

where ∗ denotes the Hermitian of a complex matrix and Q is unitary, i.e., Q∈Cn×n and QQ∗= I;
and U ∈Cn×n is upper-triangular. Then the characteristic polynomials of A and U are the same;
and the roots for the latter are just the diagonal elements of U .

The good news is the Schur decomposition exists for any complex matrix A so that the eigenvalue
problem for A is equivalent to finding its Schur decomposition. The bad news, however, is that we
cannot simply claim the same only using real matrices. In fact, if A=QUQt where A,Q,U ∈Rn×n,
Q being orthogonal and U being upper-triangular would imply that all the eigenvalues of A are
real, which is not true.

Now we have two possible choices. First, we can treat the real matrix A as a complex one
and try to find its Schur decomposition approximately, just like what we did in Jacobi iteration
method, and find complex approximations to all its eigenvalues. The problem with this approach
is that replacing real arithmetics with complex ones significantly increase the number of flops;
furthermore, the eigenvalue problem is usually a sub-problem of a much larger program, which may
not be equipped with the complex number capability.

In the second choice, we give up on reducing A to upper-triangular form but accept an upper
Hessenberg form:

A=QHQt , (1.2)

and keep everything real. Now the eigenvalue problem for A reduces to two parts: Part one involves
reducing A to H by an orthogonal matrix Q; and part two is to solve the eigenvalue problem for
the upper Hessenberg matrix H. The next sections will focus on this path, and eventually lead to
the method called real Schur decomposition.

2 Reducing to Upper Hessenberg Form

The idea to reduce a general matrix A∈Rn×n is fairly similar to the Jacobi iteration method where
we use the Givens rotation to reduce a symmetric matrix to diagonal form. However, the strategy
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here is to use Gij(θ), where i>j, to eliminate any non-zero ai,j−1 rather than aij . Again, we denote
c= cos(θ) and s= sin(θ) and will try to figure out what they should be to fulfill our purpose.

Because post-multiplying by Gtij will only modify the i-th and the j-th columns, we only need
to make sure the (i,j−1)-th component of GijA is zero:

GijA=



...
...

··· caj,j−1−sai,j−1 cajj−saij ··· caji−saii ···
...

...
··· saj,j−1+cai,j−1 sajj +caij ··· saji+caii ···

...
...


,

that is:
saj,j−1+cai,j−1 = 0 .

Hence we set:
s=− ai,j−1√

a2j,j−1+a2i,j−1

, c=
aj,j−1√

a2j,j−1+a2i,j−1

.

The denominator will never be zero since we only perform the operation when ai,j−1 6= 0. Once
the Givens matrix Gij is computed, A 7→GijAG

t
ij will have zero at the (i,j−1)-th location. Unlike

in the Jacobi iteration method, it is possible to order the Givens rotations carefully to put all
(i,j)-component to zero, where i > j+ 1. The strategy is very similar to the QR decomposition
that we had before. That is, we eliminate every non-zero element starting from the first column
and move right towards the (n−2)-th column; and in each column we follow a top-down strategy.
This is illustrated by the next example for a 5×5 matrix, where in each operation the entries to
be changed are marked by blue except the one to be eliminated, which is marked by red.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗



→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .
Paying special attention to the moves starting from the last one in the first row, when a zero entry
is encountered it is always paired with another zero entry so that previous work is not ruined.

In the end, we can use at most (n−1)(n−2)/2 Givens matrices to transform A to an upper
Hessenberg form. Also note that if the same strategy is applied to a symmetric matrix, the result
is a tridiagonal matrix. As a final note, as in the orthogonalization process, we can also use
Householder transforms to achieve the same goal here.
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3 The QR Method and a Special Case

The QR method dates back to 1950s and is one of the oldest methods to compute all the eigenvalues
of a real or complex matrices. The method is well-known for its simplicity: Let us start with
A(0) =A, then when A(k), k≥ 0 is available we compute its QR decomposition:

A(k) =QkRk , (3.1)

where Qk is orthogonal and Rk is upper-triangular. Rk usually has a different eigenstructure from
A(k); but we can use Qk to find a similar transformation of A(k) to obtain the next iterate as:

A(k+1) =QtkA
(k)Qk =RkQk . (3.2)

The hope is that when enough iterates are used, A(k) has a form whose eigenvalues are easy to
compute. The following theorem shows that the convergence is guaranteed in a special situation of
the general matrices; but in this case, the convergence is linear hence it is crucial in practice not to
apply the QR method to the original matrix A, but to its reduced Hessenberg form (see previous
section) for which the QR decomposition costs much less.

Theorem 3.1. If A has n real eigenvalues satisfying:

|λ1|> |λ2|> ···> |λn|> 0 , (3.3)

then in the QR method, A(k) approaches upper triangular form as k→+∞; or equivalently a
(k)
ij →0

as k→∞ for all i> j.

First we note that the assumption all λi are real is redundant, since if A has a complex eigenvalue
λ= a+ ib where a,b∈R and b 6= 0, then λ= a− ib is also an eigenvalue of A and |λ|=

∣∣λ∣∣.
Proof. Let us look at the goal here: Because A has n distinct real eigenvalues, it is actually
diagonalizable by its eigenvalues:

A=T−1DT ,

where the diagonal matrix D is arranged such that dii =λi and the i-th column of T−1 is its non-
zero eigenvector. Thus we want to write A(k) in a form similar to this diagonal decomposition, i.e.,
similar to a diagonal matrix.

By construction, we have:

Q0Q1···Qk−1A(k) =AQ0···Qk−1 or Q0Q1···QkRk =AQ0···Qk−1 .

Now we multiply both sides by Rk−1, Rk−2, ···, and R0 consecutively to have:

Q0Q1···QkRkRk−1 =AQ0···Qk−1Rk−1 =AQ0···Qk−2A(k−1) ,

Q0Q1···QkRkRk−1Rk−2 =AQ0···(Qk−2A(k−1)Qtk−2)Qk−2Rk−2 =AQ0···Qk−3(A(k−2))2 ,

...

Q0Q1···QkRk···R0 =A(A(0))k =Ak+1 =T−1Dk+1T .
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This helps us to use the similarity relation:

A(k+1) = (Q0···Qk)−1A(Q0···Qk) = (TQ0···Qk)−1D(TQ0···Qk) ,

and define Tk =TQ0···Qk, so that A(k+1) =T−1k DTk.
Because A is non-singular, so is every A(k) and every Rk; hence we deduce:

Tk =TQ0···Qk =Dk+1TR−10 ···R
−1
k .

All R−1k are upper-triangular; so let us consider the LU decomposition of T : T =LU where L has
ones on its diagonal. Then

Tk =Dk+1LUR−10 ···R
−1
k = (Dk+1LD−(k+1))Kk ,

where Kk =Dk+1UR−10 ···R
−1
k is upper-triangular. It is not difficult to see that the ji-component

(i < j) of Dk+1 converges to zero linearly at the rate
∣∣∣λjλi ∣∣∣; hence Dk+1→ I linearly at the rate

maxi<j

∣∣∣λjλi ∣∣∣< 1 (see exercises). So Tk approaches an upper-triangular form as k→∞. Let Tk =

Lk+Uk and T−1k = L̃k+Ũk be such that Lk and L̃k is lower-triangular with zero diagonal elements

and Uk and Ũk are upper-triangular , then we already know Lk→ 0 and L̃k→ 0. Furthermore,
because ||Tk||F = ||T ||F and

∣∣∣∣T−1k

∣∣∣∣
F

=
∣∣∣∣T−1∣∣∣∣

F
, we have:

||T ||2F = ||Tk||2F = ||Lk||2F+ ||Uk||2F≥ ||Uk||
2
F ,∣∣∣∣T−1∣∣∣∣2

F
=
∣∣∣∣T−1k

∣∣∣∣2
F

=
∣∣∣∣∣∣L̃k∣∣∣∣∣∣2

F
+
∣∣∣∣∣∣Ũk∣∣∣∣∣∣2

F
≥
∣∣∣∣∣∣Ũk∣∣∣∣∣∣2

F
.

Thus the sequences {Uk} and {Ũk} remain bounded as k→∞. Finally, we have:

A(k+1) =T−1k DTk = (L̃k+ Ũk)D(Lk+Uk) = L̃kDLk+ ŨkDLk+ L̃kDUk+ ŨkDUk→ ŨkDUk ,

where we used the boundedness of Ũk and Uk to deduce the diminishing of the second term and the
third term. Hence the distance from A(k+1) from an upper triangular form ŨkDUk is decreasing to
zero as k→∞.

The fact that we can approximate the eigenvalues of A by the diagonal elements of A(k+1)

when the latter is sufficiently close to an upper-triangular form is due to a result by Hoffman and
Wieland, of which a special version is used for establishing a similar claim regarding the Jacobi
iteration method for symmetric matrices.

The major concern about the QR method is that it requires a QR decomposition (∼O(n3)) in
every iteration, and its slow convergence. However, we already see that reducing A to an upper
Hessenberg form H can be done in O(n3) time; now let us look at applying the QR method to this
matrix H.

First, we observe that the QR iteration preserve the upper Hessenberg form. That is:

If H is upper Hessenberg and H =QR is the QR decomposition of H, then QtHQ is
also upper Hessenberg.
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In fact, we clearly see that Q=HR−1 is the product of an upper Hessenberg matrix and an upper
triangular one, hence Q is also upper Hessenberg. Thus QtHQ=RQ is the product of an upper
triangular matrix and an upper Hessenberg matrix, and it is upper Hessenberg.

Next, we recall that at most n−1 Givens rotations are required to compute the QR decom-
position of an upper Hessenberg matrix; thus both finding H =QR and computing QtHQ=RQ
takes time O(n2) if Q is treated as the product of a sequence of Givens rotations. In the end, we
reduce the computational cost of each iteration of the QR method to O(n2), and the total cost is
kept down to O(n3) if O(n) iterations are used. The O(n) iterations assumption is reasonable due
to the linear convergence of A(k) to an upper-triangular form.

Finally, it is remarked that we only showed that the difference between A(k) and a upper-
triangular form is getting smaller, but nothing is said about the convergence of A(k). So in the
program, the difference of two consecutive iterates should not be used to check whether we want
to terminate the iterations; instead, we can use the Frobenius norm of the lower-triangular part
(excluding the diagonal entries) of A(k).

4 The Practical QR Method and the Real Schur Decomposition

The problem with applying the QR method to general real matrices is of course, that the condition
in Theorem 3.1 does not usually hold. So will the sequence A(k) approach something else if those
conditions are not satisfied, at least with some modifications to the QR method?

The answer is affirmative and given by the real Schur form (c.f. upper-triangular form in
Theorem 3.1). We say that a matrix S is of the real Schur form, or quasi-upper-triangular form if
it has the following block structure:

S=


S11 S12 ··· S1m
0 S22 ··· S2m

0 0
. . .

...
0 0 0 Smm

 , (4.1)

where each Sii is either 1×1 or 2×2 having complex conjugate eigenvalues. The idea is that if A
is similar to a quasi-upper-triangular matrix S, then its eigenvalues is given by the collection of
all eigenvalues of the diagonal blocks of S. These are either a real number if Sii is 1×1, or two
complex numbers that are conjugate to each other if Sii is 2×2. The good news is that one can
prove for every A∈Rn, there exists an orthogonal Q∈Rn, such that:

QtAQ=S (4.2)

is in the real Schur form.

Theorem 4.1. Let A∈Rn×n be arbitrary, then there exist an orthogonal matrix Q∈Rn×n and a
quasi-upper-triangular matrix S ∈Rn×n such that A=QSQt.

Proof. Let us use induction on the integer m, the number of pairs of complex conjugate roots of the
characteristic polynomial of A. As the base case, we have m= 0 and A only have real eigenvalues.
Thus the Jordan canonical form of A can be accomplished with all real matrices, that is: We can
find non-singular T ∈Rn×n and upper triangular matrix J ∈Rn×n such that:

A=TJT−1 .
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Now we find the QR decomposition of T : T =QR where Q is orthogonal and R is upper-triangular;
hence:

A=QRJ(QR)−1 =QSQt ,

where S=RJR−1 ∈Rn×n is upper-triangular. This is clearly the Schur decomposition of A.
Now we suppose the real Schur decomposition for matrices with no more than m pair of complex

conjugate eigenvalues, where m≥ 0 is an integer; and we consider the case when A has m+1≥ 1
such pairs. Let λ1 =α+iβ (α,β∈R and β 6= 0) be a complex eigenvalue of A, and w=u+iv be an
eigenvector. Here u,v ∈Rn and they are not simultaneously zero. Comparing the real parts and
the imaginary parts of both sides of Aw=λ1w we obtain:

Au=αu−βv ,
Av=βu+αv .

In order to show that u and v are linearly independent, let au+bv= 0 for some a,b∈R, then:

0 =A(au+bv) = a(αu−βv)+b(βu+αv)

=α(au+bv)+β(−av+bu) =β(−av+bu)

⇒ 0 =−av+bu

⇒ 0 = a(au+bv)+b(−av+bu) = (a2+b2)u .

Now if u=0, we have −βv=Au−αu=0 hence v=0, contradiction. Thus we must have a2+b2 =0
or a= b= 0; or equivalently u and v are linearly independent.

Let [u v]=Q1R1 be the partial QR decomposition of the n×2 matrix [u v], here Q1∈Rn×2 has
two orthonormal column vectors and R1 ∈R2×2 is non-singular and upper-triangular. Following:

A[u v] = [u v]S1 , S1 =

[
α −β
β α

]
we have AQ1R1 =Q1R1S1 or Qt1AQ1 =R1S1R

−1
1 . Let P =[Q1 Q2]∈Rn×n be an orthogonal matrix,

where Q2 ∈Rn×(n−2), there is:

P tAP =

[
Qt1AQ1 Qt1AQ2

Qt2AQ1 Qt2AQ2

]
=

[
Qt1AQ1 Qt1AQ2

Qt2Q1R1S1R
−1
1 Qt2AQ2

]
=

[
R1S1R

−1
1 Qt1AQ2

0 Qt2AQ2

]
It is not difficult to see that pA(λ) = (λ−α− iβ)(λ−α+ iβ)pQt

2AQ2
(λ) so the (n−2)× (n−2) real

matrix Qt2AQ2 has exactly one less pair of complex conjugate eigenvalues than A, and by induction
assumption, it has a real Schur decomposition:

Qt2AQ2 = Q̂ŜQ̂t .

Now we define:

Q=P

[
I2

Q̂

]
,

which is clearly orthogonal, and there is:

QtAQ=

[
I2

Q̂t

]
P tAP

[
I2

Q̂

]
=

[
I2

Q̂t

][
R1S1R

−1
1 Qt1AQ2

0 Qt2AQ2

][
I2

Q̂

]
=

[
I2

Q̂t

][
R1S1R

−1
1 Qt1AQ2

0 Q̂ŜQ̂t

][
I2

Q̂

]
=

[
R1S1R

−1
1 Qt1AQ2Q̂

0 Ŝ

]
.

It is not difficult to see that the last entity is of the real Schur form.
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Thus the real Schur form seems to be an adequate tool for solving eigenvalue problem for general
matrices. To modify the previous QR method so that the iterates will approach the real Schur form,
we need several steps that are went through briefly below.

Unreduced Hessenberg matrices. Let H be an upper Hessenberg matrix. If hi+1,i=0 for some
1≤ i≤n−1, we say H is reducible since the eigenvalue problem for H reduces to two sub-problems
for H(1 : i,1: i) and H((i+1):n,(i+1):n), respectively. In practice, we check if |hi+1,i| is sufficiently
small for some i, and if it is, we set it to zero and solve two smaller problems. For this reason, in
the following analysis we always assume that H is not reducible, called unreduced; and our target
is to let the iterates to approach a reducible form (hence to decrease the size of the problem). An
important property of unreduced Hessenberg matrix is that it can only have simple eigenvalues (see
Exercise 2).

The shifted QR method. Instead of computing H(k) =QkRk and H(k+1) =RkQk; we can use
the idea from the shifted power method and compute for some µ∈R:

H(k)−µI =QkRk and H(k+1) =RkQk+µI . (4.3)

Following previous analysis we see if the eigenvalues {λi} of A (or H) are organized such that:

|λ1−µ| ≥ ··· ≥ |λn−µ| ,

then the (i+1,i)-th component of H(k) converges to zero linearly with the rate:∣∣∣∣λi+1−µ
λi−µ

∣∣∣∣ .
If λi=λi+1 or λi=λi+1, there is clearly no convergence at all. The first of these two special cases will
not happen if H is unreduced (Exercise 2), and the second one is handled by a separate procedure.

To illustrate the idea, we assume first that neither special case occurs, then the hope is to find
some µ such that it is much closer to λn than to the other eigenvalues, consequently the zeroing of
the (n,n−1)-entry is very fast. This idea leads to the single shift strategy, where we vary µ from

iteration to iteration by setting µ(k) = h
(k)
n,n. The rationale is to have h

(k)
n,n−1→ 0 fast, so that h

(k)
n,n

approaches quickly to an eigenvalue of H; hence h
(k)
n,n provides a good estimate for this eigenvalue.

The single shift strategy will of course fail, if h
(k)
n,n−1 does not converge to zero and h

(k)
n,n is not

a good approximation to an eigenvalue. This can happen, for example if h
(k)
n−1,n−2 approaches zero

and the trailing 2×2 sub-matrix: [
h
(k)
n−1,n−1 h

(k)
n−1,n

h
(k)
n,n−1 h

(k)
nn

]
has two complex conjugate eigenvalues.

A way around this difficulty is the so called double shift strategy, where in order to update from
H(k) to H(k+1), we first compute the two eigenvalues α1 and α2 of the preceding trailing matrix,
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and compute:

H(k)−α1I =QkRk

H(k+1/2) =RkQk+α1I

H(k+1/2)−α2I =Qk+1/2Rk+1/2

H(k+1) =Rk+1/2Qk+1/2+α2I .

As a result:
(QkQk+1/2)(Rk+1/2Rk) = (H(k)−α1I)(H(k)−α2I)

def
==Mk .

The net outcome of the double shift strategy is an orthogonal matrix Zk =QkQk+1/2, such that:

H(k+1) =ZtkH
(k)Zk ;

and a real upper-triangular matrix Uk =Rk+1/2Rk such that:

ZkRk =Mk = (H(k))2−(h
(k)
n−1,n−1+h(k)nn )H(k)+(h

(k)
n−1,n−1h

(k)
nn −h

(k)
n−1,nh

(k)
n,n−1)I .

This is the QR decomposition of a real matrix given by the right hand side of the last equality,
which has two non-zero sub-diagonals; thus no complex-number operations are needed.

A major grudge towards this approach is the O(n3) cost in calculating the square of H(k); people
have developed an alternative double implicit shift strategy to compute Z ′k and R′k that are almost
Zk and Rk. The theoretical foundation is the Implicit Q Theorem, which says that if A=QtHQ
with orthogonal Q and unreduced H, then Q and H are almost unique (up to a difference in the
signs in their components) providing that the first column of Q is fixed. Due to this theorem, people
only form explicit the first column of Mk, compute the first column of Zk, and use Householder
transformations to build up the subsequent columns to construct Z ′k that is almost identical to Zk.
This process does not require constructing M explicitly, and the computation cost is O(n2).

There are two possible outcomes of the double (implicit) shift strategy, that is either hn,n−1 or
hn−1,n−2 will converge to zero, leaving us a 1×1 or 2×2 block in the final real Schur form. This is
known as the Francis QR step.

The QR method by Golub and van Loan. Combining all together, we obtain a practical QR
method as described by the following procedure:
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Algorithm 4.1 QR Method

Compute the upper Hessenberg form H =GAGt.
Set q= 0.
while q <n do

Set to zero all hi,i−1 such that |hi,i−1| ≤ ε0(|hii|+ |hi−1,i−1|).
Find the largest q≥ 0 and the smallest p≥ 0 such that:

H =

 H11 H12 H13

0 H22 H23

0 0 H33


where H33 ∈Rq×q is of real Schur form and H22 ∈R(n−p−q)×(n−p−q) is unreduced.
if q <n then

Perform a Francis QR step on H22: H22←ZtH22Z.
end if

end while
Upper triangularize all 2×2 diagonal blocks in H that have real eigenvalues.

5 Single Vector Iterations

Similar to the symmetric case, when only a few special eigenvalues are desired it is not necessary to
use the QR method, which will eventually provide all the eigenvalues; and we consider the analogue
of the power method, the inverse iteration method, and the Rayleigh Quotient Iteration method.

Algorithm 5.1 The Power Method

1: Set ε0> 0 and x0 such that ||x0||= 1.
2: for i= 1,2,··· do
3: Compute yi =Axi−1.
4: Compute xi =yi/||yi||.
5: if ||xi−xi−1||<ε0 then
6: Break.
7: end if
8: end for

For example, the power method for general matrices (Algorithm 5.1) is exactly the same as that
for symmetric matrices. The condition for convergence of xi to an eigenvector of the eigenvalue
of A that has the largest modulus is also very similar to previous case, as described by the next
theorem.

Theorem 5.1. If A has one and only one eigenvalue λ1 and λ1 is semi-simple (that is, its algebraic
multiplicity is the same as the geometric multiplicity), then either x0 ∈ E⊥λ1 or the sequence {xi}
converges to an eigenvector of λ1 and ||yi|| converges to |λ1|.

Note this theorem relaxes the condition on λ1 a little bit, and the result applies also to symmetric
matrices. In particular, because all eigenvalues of a symmetric matrix A are real and semi-simple,
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we can always use a suitable shift to have the power method converge to either the largest or the
smallest eigenvalue of A.

Proof. We consider the Jordan canonical form of A:

A= [P1 P2]

[
λ1Im

Ĵ

]
[P1 P2]

−1 ,

where m is the geometric multiplicity of λ1, the columns of P1 form an orthonormal basis of Eλ1
and the columns of P2 form a basis of E⊥λ1 . Let x0 =P1u1 +P2u2 where u1 ∈Rm and u2 ∈Rn−m.

Then the non-normalized iterate zk =Akx0 is given by:

zk =Ak[P1 P2]

[
u1

u2

]
= [P1 P2]

[
λk1Im

Ĵk

][
u1

u2

]
=λk1

[
P1u1+P2(λ

−1
1 Ĵ)ku2

]
Note that P1u1 and P2(λ

−1
1 Ĵ)ku2 are orthogonal to each other, thus the normalization gives:

xk =
zk
||zk||

=
P1u1+P2(λ

−1
1 Ĵ)ku2√

||P1u1||2+
∣∣∣∣∣∣P2(λ

−1
1 Ĵ)ku2

∣∣∣∣∣∣2 .
It is not difficult to see that (λ−11 Ĵ)k→ 0 as k→∞; thus xk→ (P1u1)/||P1u1|| unless P1u1 = 0, or
equivalently x0 ∈E⊥λ1 .

Lastly, when xk→x, we see that yk→Ax=λ1x, and ||yk||= ||yk||/||xk||= |λ1|.

The power method usually finds the eigenvalue with the largest modulus, or if we combine
it with the shift strategy, one of the vertex of the convex hull of the spectrum of A. Note that
Algorithm 5.1 applies both to pure real operations and complex variable operations; in the former
case it is not possible to find a complex eigenvalue of A, nor does this case satisfies the assumption
of the theorem.

If solving the linear system with A is easy and A is non-singular, we can also use the inverse
iteration method to find the eigenvalue of A that is closest to zero.

Algorithm 5.2 The Inverse Iteration Method

1: Set ε0> 0 and x0 such that ||x0||= 1.
2: for i= 1,2,··· do
3: Solve Ayi =xi−1.
4: Compute xi =yi/||yi||.
5: if ||xi−xi−1||<ε0 then
6: Break.
7: end if
8: end for

When the conditions of Theorem 5.1 are satisfied for A−1, the inverse iteration method con-
verges: {xi} converges to an eigenvector of the eigenvalue with the smallest modulus of A, and
||yi||

−1 converges to the modulus of this eigenvalue. Combining with shifting, it is possible to use
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the inverse iteration method to find any semi-simple eigenvalue that is the only one has the same
modulus. Both the power method and the inverse iteration method converge at most linearly, if
they converge at all.

Finally, we notice that even for general matrices A, vtAv is a good approximation to an eigen-
value λ if v is close to a unit eigenvector of this eigenvalue. Thus one can also extend the RQI
method to general matrices without trouble. However, this method is less utilized for several rea-
sons. First of all, global convergence is only known for diagonalizable matrices. Secondly, even
when the method converges, the provable convergence rate is at best quadratic for general matri-
ces, slower than the cubic convergence in the case of symmetric matrices. Last but not the least,
unlike in the symmetric case where we can reduce A to a tridiagonal form so that the linear solve is
much easier, we still need to solve a linear system with a rather full matrix (the upper Hessenberg
form) with the tools at hand. For this reason, RQI is much less utilized for solving eigenvalue
problems of general matrices.

At the end of this section, we briefly discuss the deflation in the case of general matrix A. The
Wielandt deflation technique uses an eigenpair (λ,v) of A to replace the eigenvalue λ by zero; we
assume that v is a unit vector. Particularly, let u be any vector such that vtu= 1, then we define:

B=A−λvut .

We only consider the case of a real eigenvalue λ. To show that the spectrum of B only differ from
that of A by replacing λ with 0, we construct a real Schur decomposition A=QSQt, where the first
diagonal block of S is 1×1 with the value λ and the first column of Q is given by v. Let Q=[v Q̂],
then:

QtBQ=S−λ
[
vt

Q̂t

]
vut[v Q̂] =S−λ

[
1
0

]
[1 utQ̂] =S−

[
λ λutQ̂
0 0

]
is clearly of real Schur form, with the diagonal block λ replaced by zero.
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6 The Generalized Eigenvalue Problem

The generalized eigenvalue problem Ax=λBx can appear in various circumstances. For example,
let us consider the eigenvalue problem for the one-dimensional Poisson operator and its numerical
approximations: {

u′′(x) =λu(x) 0≤x≤ 1 ,
u(0) =u(1) = 0 .

(6.1)

It is not difficult to see that the solutions are given by:

λk =−k2π2 , ϕk(x) = sin(kπx) , k= 1,2,··· . (6.2)

If we use finite difference method to approximate this differential equation, say usingN+1 uniformly
distributed points xi= ih, h= 1/N and i= 0,1,···,N . Let the approximation of u(xi) be ui then the
central difference leads to: 

u0 = 0
1
h2

(u0−2u1+u2) = λu1
1
h2

(u1−2u2+u3) = λu2
...

1
h2

(uN−2−2uN−1+uN ) = λuN−1
uN = 0

,

or equivalently
Au=λu (6.3)

where

A=N2


−2 1
1 −2 1

1 −2
. . .

. . .
. . . 1
1 −2


(N−1)×(N−1)

, u=


u1
u2
u3
...

uN−1

 .

The matrix A is in the Toeplitz form, that is tridiagonal with the same element along the main
diagonal and the sub-diagonals; and it has the eigenvalues:

λk =N2(−2+2cos
kπ

N
) =−4N2sin2 kπ

2N
, k= 1,2,···,N−1 .

Using the Taylor series expansion of the sine function at zero and at π/2 we see that they are good
approximations for small and large values of k.

An alternative and also extremely popular method is the finite element method. The idea is to
discretize the “weak form” of the governing equation, that is if u is a solution to (6.1), then for any
continuous function φ defined on [0,1] such that φ(0) =φ(1) = 0, we have:∫ 1

0
u′′(x)φ(x)dx=λ

∫ 1

0
u(x)φ(x)dx ,
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or equivalently, by applying the integration-by-part to the left hand side:

−
∫ 1

0
u′(x)φ′(x)dx=λ

∫ 1

0
u(x)φ(x)dx . (6.4)

The idea of the finite element method again uses N+1 uniformly distributed points, but approxi-
mate both u and φ by piecewise linear functions:

u(x)≈uh(x) =ui
(i+1)h−x

h
+ui+1

x− ih
h

,

and φ(x)≈φh(x) =φi
(i+1)h−x

h
+φi+1

x− ih
h

for ih≤x≤ (i+1)h , 0≤ i≤N−1 .

Replacing u and φ by uh and φh in (6.4), we can carry out both integrals exactly and obtain:

−
∫ 1

0

duh(x)

dx

dφh(x)

dx
dx=λ

∫ 1

0
uh(x)φh(x)dx

⇔ −
N−1∑
i=0

∫ (i+1)h

ih

duh(x)

dx

dφh(x)

dx
dx=λ

N−1∑
i=0

∫ (i+1)h

ih
uh(x)φh(x)dx

⇔ −
N−1∑
i=0

h · ui+1−ui
h

· φi+1−φi
h

=λ
N−1∑
i=0

h

(
1

3
uiφi+

1

3
ui+1φi+1+

1

6
uiφi+1+

1

6
ui+1φi

)
⇔ φtAu=λφtBu ,

where A happens to be the same as that in the finite difference method, and

u=


u1
u2
u3
...

uN−1

 , φ=


φ1
φ2
φ3
...

φN−1

 , B=


2/3 1/6
1/6 2/3 1/6

1/6 2/3
. . .

. . .
. . . 1/6
1/6 2/3

 .

We want φtAu=λφtBu to be hold for any approximations φh, or any vector φ∈RN−1. Hence the
only solution is given by Au=λBu, a generalized eigenvalue problem for A and B. The eigenvalues
for this particular problem are difficult to compute; but we will see soon at least that there are
N−1 real eigenvalues because A is symmetric and B is symmetric and positive-definite.

Now let us look at the problem:
Ax=λBx , (6.5)

in general. First of all, if B is invertible, this problem is equivalent to B−1Ax=λx and we already
know how to solve it.

However, if B is not invertible, there is really very little we can say about the solution to (6.5).
Let us consider some extreme cases:

• If B= 0, the problem has no solution at all if A is non-singular.
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• If B=A and A is non-singular, the problem has exactly one eigenvalue 1 and all vectors are
its eigenvector; but if B=A and A is singular, any number is an eigenvalue and its eigenspace
contains the null space of A.

So we can no longer claim that the generalized eigenvalue problem has a solution at all, or has at
most finite number of eigenvalues.

A special case, however, frequently appears in practical applications is when A is symmetric
and B is symmetric and positive definite. In this case, B is non-singular so that we know (6.5) is
a well-posed problem. Furthermore, we can find the Cholesky decomposition B =LLt where L is
lower-triangular and non-singular and derive:

Ax=λBx ⇔ L−1A(Lt)−1(Ltx) =λLtx .

Hence (λ,x) is an eigenpair of (6.5) if and only if (λ,Ltx) is an eigenpair of L−1A(L−1)t, a symmetric
matrix. To this end we know immediately that all the eigenvalues to the generalized problem are
real.

Finally, we briefly mention that if B is invertible, almost all previous methods can be modified
to solve the corresponding generalized eigenvalue problem without forming B−1 and computing
B−1A explicitly. For example:

• The power method. Instead of computing yi+1 =B−1Axi we solve Byi+1 =Axi.

• The inverse iteration method. Instead of computing B−1Ayi+1 =xi we solve Ayi+1 =Bxi.

Hence there is no significant difference between the two methods now. Despite the straightforward
extension from the regular eigenvalue problem to the generalized one, there is an important dif-
ference, though. That is, in general we cannot simply use orthogonal matrices to transform A (or
B) to a similar upper Hessenberg form (or tridiagonal form in the case of symmetric matrices) to
reduce the cost associated with the linear solves.

Indeed, now we want to find “good” matrices Q and Z, and transform A and B according to:

A1 =Q−1AZ , B1 =Q−1BZ ,

then the two problems Ax= λBx and A1x= λB1x are equivalent to each other. This relates to
the generalized Schur decomposition, that is:

• If A,B ∈Cn×n, we can always find unitary Q and Z such that Q∗AZ and Q∗BZ are upper-
triangular.

• If A,B∈Rn×n, we can always find real orthogonal matrices Q and Z such that QtAZ is upper
Hessenberg and QtBZ is upper-triangular. This is known as the Hessenberg-Triangular form
of the matrix pair (A,B).

Lastly, the Hessenberg-Triangular form leads to the so called QZ method, the counterpart of the
QR method for problem (6.5).
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Exercises

Exercise 1. Show that Dk+1→ I linearly as k→∞ at the rate maxi<j

∣∣∣λjλi ∣∣∣ in the proof of Theo-

rem 3.1.

Exercise 2. If H ∈Cn is an upper Hessenberg matrix and it is unreduced, then the null space of
H−λI has at least dimension n−1 for any λ∈C. Deduce that any eigenvalue of H has geometric
multiplicity one.
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