
MATH 5330: Computational Methods of Linear Algebra

Lecture Note 15: The Singular Value Decomposition

Xianyi Zeng
Department of Mathematical Sciences, UTEP

1 Mathematical Background

Let A∈Rn×n be arbitrary but non-singular, then because AAt is symmetric positive definite, we
can find its diagonalization:

AAt =UDU t ,

where U is orthogonal and D is diagonal with positive diagonal entries. Let the diagonal elements
of D be d1≥ d2≥ ···≥ dn> 0, we can define σi =

√
di and Σ = diag(σ1,···,σn), then D= Σ2.

Define V = (Σ−1U tA)t, then we have:

V tV = Σ−1U tAAtUΣ−1 = Σ−1U tUΣ2U tUΣ−1 = I ,

hence V is orthogonal and:
A=UΣV t , (1.1)

known as the singular value decomposition (SVD) of the matrix A.
We can also start with the diagonalization of AtA and derive a similar form. Both paths prove

the existence of the SVD for non-singular matrices.
If A is singular, the diagonal matrix D and Σ can still be computed but there is some r < n

such that:
σ1≥σ2≥ ···σr >σr+1 = ···=σn = 0 .

It is thusly written:

U = [U1 U2] , Σ =

[
Σ1

0

]
⇒ AAt =UΣ2U t =U1Σ

2
1U

t
1 ,

where U1 ∈Rn×r, U2 ∈Rn×(n−r), and Σ1 ∈Rr×r is diagonal and non-singular. We similarly define
V1 = (Σ−11 U t

1A)t ∈Rn×r, and find that:

V t
1V1 = Σ−11 U t

1AA
tU1Σ

−1
1 = Σ−11 U t

1U1Σ
2
1U

t
1U1Σ

−1
1 = Ir ,

hence the column vectors of V1 are orthonormal, and we can extend them to a full set of orthonormal
basis of Rn – and define V = [V1 V2]. Then it is not difficult to check that A=UΣV t and establish
the existence of the SVD for any general matrix.

The singular value decomposition is useful in many senses, for example one can compute the
inverse of a non-singular matrix A by A−1 = V Σ−1U t. Furthermore, the condition number w.r.t.
the L2-norm is computed as σ1/σn. Indeed, κ(A) = ||A||2

∣∣∣∣A−1∣∣∣∣
2

and the right hand sides are
computed from:

||A||2 = max
x: ||x||2=1

||Ax||2 = max
x: ||x||2=1

√
xAtAx= max

x: ||x||2=1

√
xV Σ2V tx

= max
y=V tx: ||x||2=1

√
ytΣ2y = max

y: ||y||2=1

√
ytΣ2y =σ21 ;

1

and similarly
∣∣∣∣A−1∣∣∣∣

2
= 1/σ2n.

Now we relax the requirement of A being square, and consider A∈Rm×n. Following a similar
procedure to the previous case of singular square matrices, we can show the existence of the singular
value decomposition of A in the following form:

A=UΣV : U ∈Rm×m and V ∈Rn×n are orthogonal , Σ∈Rm×n is diagonal. (1.2)

Here by the last statement we mean only the (i,i)-th component of Σ is possibly non-zero, where
1≤ i≤min(m,n). If we denote these diagonal elements by σi, then we further require:

σ1≥σ2≥ ···≥σmin(m,n)≥ 0 .

The SVD of the general matrices will allow us to compute the pseudo inverse of any matrix A as
A+=V Σ+U t (see Section 3 of Lecture 8). Furthermore, it is very useful in mathematical proofs. For
example, if n≤m and rank(A)=n, then AtA=V ΣtΣV t is non-singular since ΣtΣ=diag(σ21,σ

2
2,···,σ2n)

is non-singular.

2 The SVD Algorithm

Computing the SVD of A∈Rm×n is actually easier than the eigenvalue problem for a general matrix
A ∈Rn×n (nor should they be compared since the SVD and the eigenvalue decomposition or the
real Schur decomposition are very different animals). The existence proof before actually sheds
some light on a numerical method.

Suppose m≥n, then the method involves the following steps:

Algorithm 2.1 The Jacobi-SVD Algorithm for A∈Rm×n, m≥n.

1: Compute C =AtA.
2: Use the Jacobi method to compute V tCV =D= diag(σ21,···,σ2n).
3: Compute the QR decomposition of AV : AV =U1R1.
4: R1 must be diagonal, and compute Σ = |R1| and adjust U1 correspondingly to obtain U .

If every step is done exactly, we have after the third step:

RtU tUR=V tAtAV or equivalently RtR=D .

Hence R must be diagonal. This can be shown, for example, if D is non-singular we have Rt=DR−1

with a lower-triangular matrix on the left hand side and an upper-triangular matrix on the right
hand side; and the case of singular D is similar.

In practice, every step is only performed approximately, with the error determined from either
accumulated round-off errors or the user-specified convergence tolerance. A full study of the validity
of Algorithm 2.1 requires deeper perturbation theory; here we adopt the belief that the SVD is
stable against small perturbations. If m<n, of course the method needs modification and we start
with C =AAt.

A more preferred SVD method is due to Golub and Kahan in 1965, for which the first author
also earned the popular title “Prof SVD” (this is also his plate number). The technique finds U

2

and V simultaneously by implicitly applying the QR method to AtA.

The bidiagonalization. Still assuming m≥ n, the first step of the SVD algorithm performs the
bidiagonalization of A:

U t
BAVB =

[
B
0

]
, B=



d1 f1 ··· 0

0 d2
. . .

...
. . .

. . .
. . .

...
. . .

. . . fn−1
0 ··· 0 dn


. (2.1)

We already know the tool to achieve this. Recall that for any two numbers 1≤ i≤m and 1≤ j≤n,
we can left-multiply a properly chosen Householder matrix to A, so that (1) the first i rows are
unchanged, (2) the rest m− i elements of the j-th column become a multiple of e1 ∈Rm−i, and
(3) all the last m− i rows are changed, but each new row is a linear combination of the old m− i
rows. Similarly, we can choose an appropriate Householder matrix and right-multiply it to A, so
that: (1) the first j columns are unchanged, (2) the rest n−j elements of the i-th row become a
multiple of et1 of Rn−j , and (3) all the last n− j columns are changed, but each new column is a
linear combination of the old n−j rows.

To this end, we arrange Householder transformations carefully and try to interlace the left ones
and right ones to reduce A to a bidiagonal form as shown in (2.1). This process is illustrated next
for a 6×4 matrix:

A=


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 Ut
1A−−→


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 Ut
1AV1−−−−→


∗ ∗ 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 Ut
2U

t
1AV1−−−−−−→


∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 Ut
2U

t
1AV1V2−−−−−−−→


∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 Ut
3U

t
2U

t
1AV1V2−−−−−−−−−→


∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 ∗
0 0 0 ∗

 Ut
4U

t
3U

t
2U

t
1AV1V2−−−−−−−−−−→


∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

 .
The Golub-Kahan SVD Step. This step is essentially applying the QR method to the symmetric
tridiagonal matrix T =BtB:

T =BtB=



d21 d1f1 0 ··· 0
d1f1 d22+f21 d2f2

0 d2f2
. . .

. . .
...

...
. . .

. . .
. . .

. . . d2n−1+f2n−2 dn−1fn−1
0 ··· dn−1fn−1 d2n+f2n−1


Because T is symmetric, we do not actually need to worry about complex eigenvalues, but never-
theless in the effort in reducing the (n,n−1)-component of T to nearly zero the Golub-Kahan SVD
step still start working with the trailing 2×2 matrix of T .

3

Particularly, the shift is chosen as the eigenvalue µ of:

T ((n−1) :n,(n−1) :n) =

[
d2n−1+f2n−2 dn−1fn−1
dn−1fn−1 d2n+f2n−1

]
that is closer to d2n +f2n−1; then the QR decomposition Qt(T −µI) = R is computed by using a
sequence of Givens rotations to eliminate the sub-diagonals of T : Qt =Gn−1Gn−2···G1. The next
iterates is given by Qt(T −µI)Q, which remains to be tridiagonal.

An working example of one step is given by Golub and van Loan as below:
1 1 0 0
1 2 1 0
0 1 3 .01
0 0 .01 4

 →


.5 .5916 0 0

.5916 1.785 .1808 0
0 .1808 3.7140 .0000044
0 0 .0000044 4.002497

 .
The fast convergence of the last sub-diagonal element to zero is one major reason why the QR
method is preferred to the Jacobi method for tridiagonal matrices – the convergence can be shown
to be quadratic for the former whereas it is only linear for the latter.

The Golub-Kahan SVD step assumes that T is unreduced (i.e., fi and di are all non-zero
except for dn), and it describes how to incorporate the construction of the matrix Q with its right-
multiplication to Qt(T−µI), so that the matrix BtB will never be explicitly formed. Note that the
first Givens rotation has the effect of computing G1T =G1B

tB (we omit the shift part for now).
Without forming T explicitly and reusing the storage for B (two vectors storing the diagonal and
the superdiagonal elements), the effect is demonstrated below for the case n= 6:

B←BGt
1 =



∗ ∗ 0 0 0 0
+ ∗ ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 ,

where + denotes a newly added non-zero entry that needs to be stored separately. Next a sequence
of Givens rotations U1,V2,U2,···,Vn−1, and Un−1 are used to chase the unwanted nonzero element
down the bidiagonal.

B←U1B=



∗ ∗ + 0 0 0
0 ∗ ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 , B←BV t
2 =



∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 + ∗ ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 , B←U2B=



∗ ∗ 0 0 0 0
0 ∗ ∗ + 0 0
0 0 ∗ ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 , ···

In the end, we compute:

B= (Un−1···U1)B(Gt
1V

t
2 ···V t

n−1) =U
t
BV .

It is not difficult to see that the first column of V is exactly the same as Q, which is what we want:
Then by the implicit Q theorem (which states the nearly uniqueness of the reduction of a matrix to

4

upper-Hessenberg form once the first column of the transformation matrix is given) we can assert
that V and Q are essentially the same.

One last issue in the Golub-Kahan SVD step is in order to have an unreduced T , all the diagonal
elements of B except the last one also need to be non-zero. If this happens, say dk = 0 for some
k <n, we again use a sequence of Givens rotations to left multiply B (row operations) so that the
latter is put in block bidiagonal form. The following example illustrates how it is done for the case
n= 6 and k= 3:

B=



∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗


G3,4−−−→



∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 0 + 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗


G3,5−−−→



∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 0 0 +
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗


G3,6−−−→



∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 0 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

. (2.2)

Finally, if dn = 0 is the only zero element of the diagonal and superdiagonal ones in B, the Golub-
Kahan SVD step still works because T is unreduced. However, this essentially means we’re hoping
that the QR iterations will give rise to an eigenvalue that is close to zero; and we expect to do
better than using an iterative procedure just to find a zero eigenvalue! This happens, for example,
in (2.2) where we eventually obtain a 3×3 bidiagonal matrix with a zero trailing element. The idea
is to right-multiplying with Givens matrices (column operations) to put the entire column to zero;
in the next example we only display the upper-left 3×3 submatrix from the previous example: ∗ ∗ 0

0 ∗ ∗
0 0 0

 G2,3−−−→

 ∗ ∗ +
0 ∗ 0
0 0 0

 G1,3−−−→

 ∗ ∗ 0
0 ∗ 0
0 0 0

 .
The whole step is described in Algorithm 2.2. The net outcome of this algorithm is to overwrite
B with the bidiagonal matrix B=U

t
BV where both U and V are orthogonal and V is essentially

the one that would be obtained by applying the QR iteration to T =BtB.

Combining everything, we have the followng algorithm to compute the SVD of A∈Rm×n in the
case m≥n. The outcome of this algorithm is overwriting A with U tAV = Σ+E, where U ∈Rm×m

and V ∈ Rn×n are orthogonal, Σ ∈ Rm×n is diagonal; and E satisfies ||E||2 ≈ ε||A||2, where ε is
a small positive number that only depends on the sizes m and n, the machine accuracy, and the
parameter ε0.

5

Algorithm 2.2 The Golub-Kahan SVD Step

1: Compute µ as described before.
2: Set y= t11−µ.
3: Set z= t12.
4: for k= 1,2,···,n−1 do
5: Determine c1 = cos(θ1) and s1 = sin(θ1) such that

[y z]

[
c1 s1
−s1 c1

]
= [∗ 0] .

6: Compute B=BGk,k+1(θ1)
t.

7: Set y= bkk and z= bk+1,k.
8: Determine c2 = cos(θ2) and s2 = sin(θ2) such that[

c2 −s2
s2 c2

][
y
z

]
=

[
∗
0

]
.

9: Compute B=Gk,k+1(θ2)B.
10: if k <n−1 then
11: Set y= bk,k+1 and z= bk,k+2

12: end if
13: end for

Algorithm 2.3 The SVD Algorithm (m≥n)

1: Compute the bidiagonalization: [
B
0

]
←U tAV .

2: Set q= 0 and pick a small positive number ε0.
3: while q <n do
4: Set bi,i+1 to zero if |bi,i+1| ≤ ε0(|bii|+ |bi+1,i+1|) for any 1≤ i≤n−1.
5: Find the largest q and the smallest p such that:

B=

 B11 0 0
0 B22 0
0 0 B33


where B33 is diagonal and B22 has nonzero superdiagonal.

6: if q <n then
7: if Any diagonal entry of B22 is zero then
8: Bidiagonalize B22 as described before.
9: else

10: Apply Algorithm 2.2 to B22.
11: Copmute B= diag(Ip,U,Iq+m−n)tBdiag(Ip,V,Iq).
12: end if
13: end if
14: end while

6

	Mathematical Background
	The SVD Algorithm

