Google Scholar: https://scholar.google.com/citations?user=Fvmdu-oAAAAJ&hl=en&oi=ao
# | Publications |
---|---|
72 | “Design of nanomaterials for the removal of per-and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanism, challenges, and opportunities” Sheng Yin, Dino Villagrán, 2022, Science of The Total Environment,154939; https://doi.org/10.1016/j.scitotenv.2022.154939 |
71 | “Effect of surface functionalization of Fe3O4 nano-enabled electrodes on the electrochemical reduction of nitrate” Mariana Marcos-Hernández, Gabriel Antonio Cerrón-Calle, Yulu Ge, Sergi Garcia-Segura, Carlos M Sánchez-Sánchez, Ana S Fajardo, Dino Villagrán, Separation and Purification Technology, 2022, 282, 119771 https://doi.org/10.1016/j.scitotenv.2022.154939 |
70 | “Nano-structural effects on Hematite (α-Fe 2 O 3) nanoparticle radiofrequency heating” Camilah D Powell, Amanda W Lounsbury, Zachary S Fishman, Christian L Coonrod, Miranda J Gallagher, Dino Villagran, Julie B Zimmerman, Lisa D Pfefferle, Michael S Wong, Nano Convergence, 2021, 8, 1-9, https://doi.org/10.1186/s40580-021-00258-7 |
69 | “Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment” Paul Westerhoff, Pedro JJ Alvarez, Jaehong Kim, Qilin Li, Alessandro Alabastri, Naomi J Halas, Dino Villagran, Julie Zimmerman, Michael S Wong, Current Opinion in Chemical Engineering, 2021, 100709. https://doi.org/10.1016/j.coche.2021.100709 |
68 | “Nano-structural effects on Hematite (α-Fe2O3) nanoparticle radiofrequency heating”, Camilah D. Powell, Amanda W. Lounsbury, Zachary S. Fishman, Christian L. Coonrod, Miranda J. Gallagher, Dino Villagran, Julie B. Zimmerman, Lisa D. Pfefferle & Michael S. Wong, Nano Convergence 8, 8 2021. https://doi.org/10.1186/s40580-021-00258-7 |
67 | “Superparamagnetic nanoadsorbents for the removal of trace As(III) in drinking water Mariana” Marcos-Hernández, Roy A. Arrieta, Karen Ventura, José Hernández, Camilah D. Powell, Ariel J. Atkinson, Jasmina S. Markovski, Jorge Gardea-Torresdey, Kiril D. Hristovski, Paul Westerhoff, Michael S. Wong, Dino Villagrán, Environmental Advances, Volume 4, 2021, 100046, https://doi.org/10.1016/j.envadv.2021.100046. |
66 | “Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation” Isabel Barraza Alvarez, Yanyu Wu, Joel Sanchez, Yulu Ge, Mario V Ramos-Garcés, Tong Chu, Thomas F Jaramillo, Jorge L Colón, Dino Villagrán Sustainable Energy & Fuels, 2021, DOI: https://doi.org/10.1039/D0SE01134G |
65 | “Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties” Camilah D Powell, Sujin Guo, Lea M Godret-Miertschin, Karen Ventura, Amanda W Lounsbury, Chelsea A Clark, Dino Villagran, Julie B Zimmerman, Ariel J Atkinson, Paul Westerhoff, Michael S Wong SN Applied Sciences 2020 1690 https://doi.org/10.1007/s42452-020-03491-7 |
64 | “Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality.” Sergi Garcia-Segura, Alec Brockway Nienhauser, Ana S Fajardo, Rishabh Bansal, Christian L Coonrod, John D Fortner, Mariana Marcos-Hernández, Tanya Rogers, Dino Villagran, Michael S Wong, Paul Westerhoff. Current Opinion in Electrochemistry, 2020. 22 9016 https://doi.org/10.1016/j.coelec.2020.03.001 |
63 | “Superparamagnetic MOF@ GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents.” Karen Ventura, Roy A Arrieta, Mariana Marcos-Hernández, Vahid Jabbari, Camilah D Powell, Reagan Turley, Amanda W Lounsbury, Julie B Zimmerman, Jorge Gardea-Torresdey, Michael S Wong, Dino Villagrán. Science of The Total Environment. 2020. 139213 https://doi.org/10.1016/j.scitotenv.2020.139213 |
62 | “Hydrogen Evolution Catalyzed by a Metal-Free Corrole: An Experimental and Theoretical Mechanistic Study” Nancy Rodriguez-Lopez, Yanyu Wu, Yulu Ge, Dino Villagrán. The Journal of Physical Chemistry C. 2020, 124, 10265-10271 https://doi.org/10.1021/acs.jpcc.9b10957 |
61 | “Redox Potential Tuning of Dimolybdenum Systems through Systematic Substitution by Guanidinate Ligands” Nancy Rodríguez-López, Nathalie Metta, Alejandro J Metta-Magana, Dino Villagrán. Inorganic Chemistry, 2020, 59, 3091-3101 https://doi.org/10.1021/acs.inorgchem.9b03394 |
60 | “Magnetic In–Pd catalysts for nitrate degradation” Sujin Guo, Camilah D Powell, Dino Villagrán, Michael S Wong. Environmental Science: Nano, 2020, 7, 2681-2690 https://doi.org/10.1039/D0EN00069H |
59 | Opportunities for Nanotechnology to Enhance Electrochemical Treatment of Pollutants in Potable Water and Industrial Wastewater -A perspective Sergi Garcia-Segura, Xiaolei Qu, Pedro Alvarez, Brian P Chaplin, Wei Chen, John Crittenden, Yujie Feng, Guandao Gao, Zhen He, Chia-Hung Hou, Xiao Hu, Guibin Jiang, Jaehong Kim, Jiansheng Li, Qilin Li, Jie Ma, Jinxing Ma, Alec B. Nienhauser, Junfeng Niu, Bingcai Pan, Quan Xie, Filippo Ronzani, Dino Villagran, David Waite, W. Shane Walker, Can Wang, Michael Wong and Paul Westerhoff, Environmental Science: Nano, 2020 https://doi.org/10.1039/D0EN00194E |
58 | Superparamagnetic MOF@ GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents Karen Ventura, Roy A Arrieta, Mariana Marcos-Hernández, Vahid Jabbari, Camilah D Powell, Reagan Turley, Amanda W Lounsbury, Julie B Zimmerman, Jorge Gardea-Torresdey, Michael S Wong, Dino Villagrán, Science of the Total Environment, 2020, 738, 139213 https://doi.org/10.1016/j.scitotenv.2020.139213 |
57 | Hydrogen Evolution Catalyzed by a Metal-Free Corrole: An Experimental and Theoretical Mechanistic Study. Nancy Rodriguez-Lopez, Yanyu Wu, Yulu Ge, Dino Villagrán. The Journal of Physical Chemistry C, 2020, 124 (19), 10265-10271 https://doi.org/10.1021/acs.jpcc.9b10957 |
56 | Disparities between Experimental and Environmental Conditions: Research Steps towards Making Electrochemical Water Treatment a Reality Sergi Garcia-Segura, Alec Brockway Nienhauser, Ana S Fajardo, Rishabh Bansal, Christian L Coonrod, John D Fortner, Mariana Marcos-Hernández, Tanya Rogers, Dino Villagran, Michael S Wong, Paul Westerhoff. Current Opinion in Electrochemistry, 2020, 22, 9-16. https://doi.org/10.1016/j.coelec.2020.03.001 |
55 | Redox Potential Tuning of Dimolybdenum Systems through Systematic Substitution by Guanidinate Ligands Nancy Rodríguez-López, Nathalie Metta, Alejandro J. Metta-Magana, Dino Villagrán, Inorganic Chemistry, 2020, 59 (5), 3091-3101. https://doi.org/10.1021/acs.inorgchem.9b03394 |
54 | Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment Camilah D Powell, Ariel J Atkinson, Yizhao Ma, Mariana Marcos-Hernandez, Dino Villagran, Paul Westerhoff, Michael S Wong, Journal of Nanoparticle Research, 2020, 22, 48 https://doi.org/10.1007/s11051-020-4770-4 |
53 | Mesoporous Composite Nanomaterials for Dye Removal and Other Applications Mariana Marcos-Hernández, Dino Villagrán, in Composite Nanoadsorbents, Elsevier, 2019 265-293 https://doi.org/10.1016/B978-0-12-814132-8.00012-5 |
52 | Silica Removal Using Magnetic Iron-Aluminum (Fe-Al) Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis Yan-Fang Guan, Mariana Marcos-Hernández, Xinglin Lu, Wei Cheng, Han-Qing Yu, Menachem Elimelech, Dino Villagrán Environmental Science & Technology, 2019, 53 13302-13311 https://doi.org/10.1021/acs.est.9b02883 |
51 | Water Splitting Electrocatalysis within Layered Inorganic Nanomaterials Mario V Ramos-Garcés, Joel Sanchez, Isabel Barraza Alvarez, Yanyu Wu, Dino Villagrán, Thomas F Jaramillo, Jorge L Colón Water Chemistry, 2019, Ed. IntechOpen, DOI: 10.5772/intechopen.88116 |
50 | Transition metal-modified exfoliated zirconium phosphate as an electrocatalyst for the oxygen evolution reaction. Mario V Ramos-Garcés, Joel Sanchez, Daniel Del Toro-Pedrosa, Isabel Barraza Alvarez, Yanyu Wu, Eduardo Valle, Dino Villagrán, Thomas F Jaramillo, Jorge L Colón, ACS Applied Energy Materials, 2019, 2, 5. https://doi.org/10.1021/acsaem.9b00299 |
49 | Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study Pingfeng Yu, Zijian Wang, Mariana Marcos-Hernandez, Pengxiao Zuo, Danning Zhang, Camilah Powell, Aaron Y Pan, Dino Villagrán, Michael S Wong, Pedro JJ Alvarez, Environmental Science: Nano, 2019, DOI: 10.1039/c9en00827f |
48 | Synthesis of high-surface area transition metal sponges and their catalytic properties |
47 | Electrocatalytic Production of Hydrogen Gas by a Cobalt Formamidinate Complex |
46 | Emerging opportunities for nanotechnology to enhance water security Pedro JJ Alvarez, Candace K Chan, Menachem Elimelech, Naomi J Halas, Dino Villagrán, Nature Nanotechnology, 2018, 13, 634. https://doi.org/10.1038/s41565-018-0203-2 |
45 | Magnetic and electrocatalytic properties of transition metal doped MoS2 nanocrystals LM Martinez, JA Delgado, CL Saiz, A Cosio, Y Wu, D Villagrán, K Gandha, C Karthik, IC Nlebedim, SR Singamaneni, Journal of Applied Physics, 2018, 124, 153903. https://doi.org/10.1063/1.5043208 |
44 | Efficient Electrocatalytic Hydrogen Gas Evolution by a Cobalt-Porphyrin-based Crystalline Polymer |
43 | Hydrogen Gas Generation by a Metal-Free Fluorinated Porphyrin
|
42 | High dispersions of carbon nanotubes on cotton-cellulose benzoate fibers with enhanced electrochemical generation of reactive oxygen species in water |
41 | 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications Hoejin Kim, Fernando Torres, Dino Villagran, Calvin Stewart, Yirong Lin, Tzu‐Liang Bill Tseng, Macromolecular Materials and Engineering, 2017, 302 (11) http://dx.doi.org/10.1002/mame.201700229 |
40 | Electrocatalytic hydrogen gas generation by cobalt molybdenum disulfide (CoMoS2) synthesized using alkyl-containing thiomolybdate precursors Yanyu Wu, M. Zarei-Chaleshtori, Brenda Torres, Thamina Akter, Carlos Diaz-Moreno, Geoffrey B. Saupe, Jorge A Lopez, Russell R. Chianelli, Dino Villagrán. International Journal of Hydrogen Energy, 2017, 42 20669-20676 DOI: https://doi.org/10.1016/j.ijhydene.2017.07.028 |
39 | Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, T.L.B. Tseng, Smart Materials and Structures 2017, 26, 080527; DOI: https://doi.org/10.1088/1361-665X/aa738e |
38 | Introducing Students to Inner Sphere Electron Transfer Concepts through Electrochemistry Studies in Diferrocene Mixed-Valence Systems Karen Ventura, Mark B. Smith, Jacob R. Prat, Lourdes, E. Echegoyen, Dino Villagrán J. Chem. Ed. 2017, 94, 526-529, DOI: 10.1021/acs.jchemed.6b00642 |
37 | Band gap and Schottky barrier engineered photocatalyst with promising solar light activity for water remediation. Vahid Jabbari, M Hamadanian, M Shamshiri, Dino Villagrán RSC Advances, 2016, 6 (19), 15678-15685 https://doi.org/10.1039/C5RA24096D |
36 | Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity towards Organic Pollutants. V. Jabbari, J.M. Veleta, M. Zarei-Chaleshtori, J. Gardea-Torresdey, D. Villagrán, Chem. Eng. J. , 2016, 774-783 10.1016/j.cej.2016.06.034 |
35 | [U(bipy)4]: A Mistaken Case of U(0)? S. Fortier, J. Veleta, A. Pialat, J. Le Roy, K.B. Ghiassi, M.M. Olmstead, A. Metta‐Magaña, M. Murugesu, D. Villagrán. Chemistry–A European Journal 2016, 22, 1931-1936 doi: 10.1002/chem.201504982 |
34 | Enhanced charge carrier efficiency and solar light-induced photocatalytic activity of TiO 2 nanoparticles through doping of silver nanoclusters and C–N–S nonmetals. V Jabbari, M Hamadanian, S Karimzadeh, D Villagrán. J. of Ind. and Eng. Chem. 2016, 35, 132–139 doi:10.1016/j.jiec.2015.12.026 |
33 |
Unprecedented W2(0) quadruply bonded complex supported by π‐donor ligands
|
32 |
In,V-codoped TiO2 nanocomposite prepared via a photochemical reduction technique as a novel high efficiency visible-light-driven nanophotocatalyst
|
31 |
Synthesis of Cysteine, Cobalt and Copper-doped TiO2 Nanophotocatalysts with Excellent Visible-Light-Induce Photocatalytic Activity Materials Science in Semiconductor Processing
|
30 |
Stabilization of a W26+ Bimetallic Complex Supported by Two N,N’,N’’-Triphenylguanidinate Ligands
|
29 |
Manipulating Magnetism: Naked Ru25+ Paddlewheels Devoid of Axial Interactions
|
28 |
Synthesis, Characterization, and Evaluation of cis-Diphenyl Pyridineamine Platinum(II) Complexes as Potential Anti-Breast Cancer Agents
|
Before UTEP | |
27 |
Pacman and Hangman Cobalt Tetraazamacrocycles
|
26 |
Iron in a trigonal tris(alkoxide) ligand environment
|
25 |
Dinitrogen binding at vanadium in a tris(alkoxide) ligand environment
|
24 |
Pseudotetrahedral d(0), d(1), and d(2) metal-oxo cores within a tris(alkoxide) platform.
|
23 |
Decarbonylation of Ethanol to Methane, Carbon Monoxide and Hydrogen by a [PNP]Ir Complex.
|
22 |
Synthesis, Structures and Properties of 1,2,4,5-Benzenetetrathiolate Linked Group 10 Metal Complexes
|
21 |
A Convergent Approach to the Synthesis of Multimetallic Dithiolene Complexes.
|
20 |
A Two-Step Synthesis to the Most Easily Ionized Molecule.
|
19 |
Inelastic neutron scattering study of a quantum spin trimer.
|
18 |
How Small Variations in Crystal Interactions Affect Macroscopic Properties.
|
17 |
A Fractional Bond Order of ½ in Pd25+-Formamidinate Species; The Value of Very High-Field EPR Spectra.
|
16 |
Uniquely Strong Electronic Communication between [Mo2] Units Linked by Dioxolene Dianions.
|
15 |
A Diamagnetic Dititanium(III) Paddlewheel Complex with no Direct Metal-Metal Bond.
|
14 |
Metal-Metal Bonding in Mixed Valence Ni25+ Complexes and Spectroscopic Evidence for a Ni26+ Species.
|
13 |
Strong Electronic Interaction between Two Dimolybdenum Units Linked by a Tetraazatetracene.
|
12 |
Facilitating Access to the Most Easily Ionized Molecule: An Improved Synthesis of the Key Intermediate, W2(hpp)4Cl2, and Related Compounds.
|
11 |
Expeditious Access to the Most Easily Ionized Closed-shell Molecule, W2(hpp)4.
|
10 |
Strong Electronic Coupling between Mo2n+ Units: The Oxidation Products of [Mo2(DAniF)3]2(µ– H)2 and Mo2(DAniF)4.
|
9 |
Structural and Magnetic Evidence Concerning Spin Crossover in Formamidinate Compounds with Ru25+ Cores.
|
8 |
Modeling Spin Interactions in a Cyclic Trimer and a Cuboidal Co4O4 Core with Co(II) in Tetrahedral and Octahedral Environments.
|
7 |
Paramagnetic Precursors for Supramolecular Assemblies: Selective Syntheses, Crystal Structures, and Electrochemical and Magnetic Properties of Ru2(O2CMe)4-n(formamidinate)nCl Complexes, n = 1-4.
|
6 |
Paramagnetism at Ambient Temperature, Diamagnetism at Low Temperature in a Ru26+ Core: Structural Evidence for Zero-Field Splitting.
|
5 |
Strong Electronic Coupling between Dimolybdenum Units Linked by the N,N'-Dimethyloxamidate Anion in a Molecule Having a Heteronaphthalene-like Structure.
|
4 |
Reaction Products of W(CO)6 with Formamidines; Electronic Structure of a W2(µ-CO)2 Core with Unsymmetric Bridging Carbonyls.
|
3 |
Dicarboxylato-bridged diruthenium units in two different oxidation states: the first step towards the synthesis of Creutz-Taube analogs with dinuclear Ru2n+ species.
|
2 |
Modifying Electronic Communication in Dimolybdenum Units by Linkage Isomers of Bridged Oxamidate Dianions.
|
1 |
Finite Group Theory for Large Systems. 2. Generating Relations and Irreducible Representations for the Icosahedral Point Group.
|